Vinaora Nivo SliderVinaora Nivo SliderVinaora Nivo SliderVinaora Nivo Slider
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Instytut Nafty i Gazu - Państwowy Instytut Badawczy

Instytut Nafty i Gazu - Państwowy Instytut Badawczy

TYTUŁ: Analiza możliwości pozyskiwania pozabilansowych zasobów gazu ziemnego z nasyconych poziomów solankowych w procesach sekwestracji CO2/Analysis of additional gas production possibility from deep saline aquifers in the process of CO2 sequestration

 

Autor: Marcin Warnecki

211 warnecki

OPIS PL

W ciągu ostatnich kilku dekad wzrosła koncentracja gazów cieplarnianych w atmosferze, co wzbudziło zaniepokojenie z powodu zmian klimatycznych. Uważa się, że gazy cieplarniane zatrzymują ciepło emitowane z powierzchni Ziemi w dolnych warstwach atmosfery, czego skutkiem jest globalne ocieplenie. Emisja ditlenku węgla (CO2) odpowiada za około 2/3 obserwowanego procesu globalnego ocieplenia. W ciągu ostatnich 150 lat stężenie ditlenku węgla w atmosferze wzrosło z 280 ppm do około 400 ppm. Stało się tak głównie w wyniku spalania paliw kopalnych. Efektywne korzystanie z alternatywnych źródeł energii proponuje się jako pierwsze podejście do obniżenia poziomu CO2 w atmosferze.
W minionym dziesięcioleciu geologiczne składowanie ditlenku węgla szczegółowo badano w kontekście nowego rozwiązania umożliwiającego ograniczenie koncentracji węgla w atmosferze. Idea ta polega na wychwytywaniu CO2 ze źródeł emisji, a następnie zatłaczaniu go do głębokich formacji geologicznych.
Istnieją różne metody składowania:
- zatłaczanie CO2 do wyeksploatowanych złóż ropy i gazu;
- zatłaczanie CO2 do pokładów węgla;
- zatłaczanie CO2 do głębokich solankowych poziomów wodonośnych.
Poziomy wodonośne mają najwyższą szacowaną pojemność. Niejednokrotnie błędnie uważa się, że solankowe poziomy wodonośne cechuje niska wartość ekonomiczna. Jednak niektóre z nich mogą być istotnym źródłem energii, gdyż zawierają rozpuszczony w wodzie metan i/lub ciepło geotermalne. Pozyskanie tej energii może pomóc zrównoważyć koszty wychwytywania i składowania ditlenku węgla (CCS).
W naszym kraju produkcja energii odbywa się głównie poprzez spalanie węgla – ok. 95%. W związku z tym technologie niskiej emisji CO2 z jego przechwytywaniem i bezpiecznym magazynowaniem są w Polsce wysoce pożądane. Głębokie solankowe poziomy wodonośne stanowią największy znany obecnie potencjał sekwestracyjny ditlenku węgla, lecz w przeciwieństwie do wgłębnych struktur naftowych stopień ich geologicznego rozpoznania jest znacznie mniejszy. W istniejących poziomach solankowych nasyconych gazem ziemnym szczelność (na przestrzeni czasu geologicznego) potwierdzona jest występowaniem niewielkich złóż gazu w lokalnych kumulacjach struktury. Typując przyszłe poziomy geologiczne do podziemnego składowania CO2 w Polsce, należy uwzględnić utwory permskie zalegające na obszarze Niżu Polskiego. Szczególną uwagę zwraca megastruktura niecki poznańskiej, wypełnionej utworami czerwonego spągowca rozciągającymi się na powierzchni ok. 5000 km2. Piaskowce te stanowią rozległy poziom solankowy nasycony gazem ziemnym. W lokalnych kulminacjach struktury powstały złoża gazu ziemnego. Jak wyliczono, megastruktura niecki poznańskiej w poziomach solankowych czerwonego spągowca może zawierać zasoby rozpuszczonego gazu ziemnego w ilości 120 mld Nm3, a więc na poziomie obecnie udokumentowanych zasobów gazu ziemnego w Polsce.
Już w latach 70. rozważano różne metody pozyskania rozpuszczonego gazu. Jedną z ciekawszych propozycji jest prezentowana koncepcja składowania w tych poziomach CO2. Gaz ten cechuje dobra rozpuszczalność w wodach złożowych, znacznie większa (ok. 10-krotnie) od rozpuszczalności gazów ziemnych. W trakcie procesu sekwestracji CO2 powinien zatem zachodzić proces wypierania rozpuszczonych w solankach rodzimych gazów ziemnych i ich migracja do wyżejległych kulminacji, które stanowią złoża gazu ziemnego. Następowałby więc proces naturalnego uzupełnienia zasobów uwolnionym gazem ziemnym z możliwością jego późniejszego wydobycia.
Monografia składa się z 7 rozdziałów.
Rozdział 1 to przegląd literaturowy dotyczący badanego zagadnienia. Zaprezentowano w nim wiele koncepcji i wynalazków mających na celu umożliwienie pozyskiwania gazu ziemnego zawartego w głębokich poziomach solankowych. Są to techniki polegające głównie na wydobyciu nasyconej solanki na powierzchnię, a następnie odseparowaniu z niej rozpuszczonego gazu. Opisano również kilka projektów badawczych prowadzonych w Polsce i za granicą.
Rozdział 2 dotyczy geologii. Zawiera ogólną charakterystykę geologiczną polskiej części basenu czerwonego spągowca i struktury niecki poznańskiej – jako potencjalnego krajowego obiektu sekwestracyjnego. W rozdziale opisano proponowaną koncepcję pozyskiwania gazu ziemnego poprzez zatłaczanie CO2 bezpośrednio do nasyconych poziomów solankowych w procesie sekwestracji CO2.
Rozdział 3 przedstawia opis i wyniki kompleksowych badań właściwości fazowych mieszanin powstałych podczas zatłaczania CO2 do solanek zawierających metanowy gaz ziemny. Badania prowadzono z użyciem aparatury PVT firm Chandler i Ruska w złożowych warunkach ciśnienia i temperatury. Opisano użytą aparaturę, przedstawiono metodykę badań, w końcu zaprezentowano uzyskane rezultaty testów PVT gazów rodzimych (Ujazd-15, Porażyn-2A), ditlenku węgla i ich mieszanin pośrednich.
Rozdział 4 zawiera opis i wyniki badań dotyczących zjawiska pęcznienia solanki wskutek zatłaczania do niej CO2 (ang. swelling test). Przedstawiono również rezultaty badań rozpuszczalności gazów ziemnych i CO2 w solankach złożowych i wodzie destylowanej.
Rozdział 5 przedstawia szczegółową charakterystykę i wyniki eksperymentów prowadzonych na fizycznych modelach złoża. Doświadczenia wykonywano w złożowych warunkach ciśnienia i temperatury. Pierwszy omówiony eksperyment przeprowadzono na fizycznym modelu złoża bez porowatości. Kolejne eksperymenty pozwoliły zbliżyć się do bardziej rzeczywistych warunków, tj. były wykonywane w ośrodku porowatym. Testy udowodniły, że możliwe jest pozyskanie dodatkowych ilości gazu ziemnego poprzez wyparcie ich ze środowiska wodnego.
Rozdział 6 opisuje numeryczny geologiczny model złoża, którym posłużono się w symulacjach procesu desorpcji gazu ziemnego z głębokich poziomów wodonośnych i geologicznej sekwestracji CO2. Przedstawiono specyfikację modelu symulacyjnego łącznie z parametrami petrofizycznymi, właściwościami płynu złożowego i ich wzajemnym oddziaływaniem. Symulacje numeryczne wykorzystujące specjalistyczne oprogramowanie (Eclipse firmy Schlumberger) były ukierunkowane na oszacowanie ilości gazu ziemnego możliwego do pozyskania podczas zatłaczania CO2 w procesie sekwestracji. W rozdziale opisano wpływ zatłaczania CO2 na ilość wydobytego gazu ziemnego – rozważono i przedyskutowano kilka scenariuszy prowadzenia tego procesu.
Rozdział 7 prezentuje podsumowanie uzyskanych wyników badań oraz wnioski końcowe. Przedyskutowano w nim pewne koncepcje i strategie pozyskiwania gazu ziemnego z poziomów solankowych. Przedstawiono zalecenia dotyczące przyszłych prac.

OPIS EN:

Normal 0 21 false false false PL X-NONE X-NONE

In the past few decades, greenhouse gases concentration has increased in the atmosphere and aroused concerns about climate change. It is believed, that greenhouse gases trap the heat radiated from the Earth's surface and lower layers of the atmosphere, causing global warming, and that carbon dioxide (CO2) accounts for about two thirds of the observed global warming.
In the past 150 years, the concentration of carbon dioxide in the atmosphere has surged from 280 ppm, to about 400 ppm. This was mainly as a result of burning fossil fuels.
Increasing the efficiency and developing alternative energies, have been introduced as approaches, to reduce the level of carbon dioxide in the atmosphere. Geological storage of carbon dioxide has been studied comprehensively in the past decade, as a new solution, to reduce the carbon content in the atmosphere. This idea consists of capturing carbon dioxide from sources of emission and injecting it into deep geological formations.

There are different methods of storage strategies:
- injecting CO2 into depleted oil and gas reservoirs,
- injecting CO2 in coal seams,
- injecting CO2 into deep saline aquifers.

Among these candidates, deep saline aquifers have the highest estimated storage capacity.
On the other hand, it is erroneously believed, that deep saline aquifers have low economic value. Some aquifers contain sources of energy, such as dissolved methane or geothermal energy.
Production of this energy can help offset the cost of Carbon Capture and Storage (CCS).
Coal accounts for 95% of energy generation in Poland. Therefore, low carbon emitting technology with its capture and underground storage of CO2, is required in our country. Deep saline aquifers have the largest long-term storage potential of CO2, but there are many problems with their exploration and qualification, due to the lack of tightness confirmation. It is very important to reduce the cost of their exploration, done mainly by expensive drilling. In existing aquifers saturated by natural gases, tightness is confirmed by the presence of a lot of local gas accumulations, in their top structures. Special attention was focused on the Poznan Trough mega-aquifer, naturally saturated by native natural gases. This mega-structure represents a great potential for long-term underground CO2 storage in Poland, covering an area of 5000 km2. At present, these Rotliegend sandstones, represent a huge container of brine saturated with natural gas.
Reservoirs of natural gas have been formed in its local culminations. As calculated, the Poznan Trough structure may contain dissolved natural gas resources, estimated as nearly 120 billion Nm3, and therefore, at the current documented level of natural gas reserves in Poland.
Already in the 70's various ways of obtaining dissolved gas were considered. One of the most interesting proposals, seems to be the concept of storing CO2 in these layers. This gas has high solubility in reservoir water, much higher (ten times) than the solubility of natural gases. In the process of CO2 sequestration, the phenomenon of displacement of native natural gas (which originally saturates the underlying water) by CO2 injected into reservoir should occur. Such a displacement process, allows to replenish the gas cap by a volume, equivalent to methane gas dissolved in underlying water.
This Monograph is organized into seven chapters.
Chapter 1 contains the literature review related to this research. This chapter also describes many inventions and patents, regarding natural gas production from deep saline aquifers – conducted mainly by methane extraction from brine, in surface separation processes. It includes a description of some research and projects conducted both in Poland and abroad.
Chapter 2 focuses on geology. It contains the geological characteristics of the Polish Rotliegend Basin and Poznan Trough mega-structure – the potential national sequestration object. The chapter introduces the proposed idea of obtaining natural gas resources, by injecting CO2 directly into the gas saturated saline aquifer, in the sequestration process.
Chapter 3 deals with the comprehensive testing and analyses of the phase transitions/behavior of the mixtures, formed during the process of CO2 injection into saline aquifers saturated with natural gas. Studies were performed using the Chandler/Ruska PVT (Pressure-Volume-Temperature) systems at reservoir conditions.
This chapter covers the PVT apparatus description, testing methodology and finally the results of the PVT study of native reservoir gases (Ujazd-15, Porażyn-2A), carbon dioxide and its mixtures with the native methane gases.
Chapter 4 contains studies connected with the reservoir brine swelling process, during saturating it with CO2 – this is called the Swelling Test. The chapter also deals with a solubility study of native gases and carbon dioxide in reservoir brine and distilled water.
Chapter 5 provides a detailed description and the results of my advanced experiments, performed on gas reservoir physical models with underlying water. These experiments were conducted at the reservoir (pressure and temperature) conditions.
The first experiment was performed using a physical model having no porosity. Subsequent experiments allowed for the development of earlier studies, by using a more realistic model, with a porous rock matrix. These experiments have proven, that it is possible to achieve the additional natural gas volumes, by displacing it from saline aquifer.
Chapter 6 describes a numerical model used to simulate the methane gas production, from deep saline aquifers and geologic storage of CO2. All of the specifications of the model, including petrophysical properties, fluid properties and rock-fluid properties, are explained in this chapter. Numerical simulations, performed using specialized software: Eclipse by Schlumberger company, were mainly focused on calculating the amount of gas possible to obtain during CO2 injection in the sequestration process. It describes the effect of injecting CO2 to methane gas recovery –various scenarios were simulated and discussed.
Chapter 7 presents the summary of the results of the studies and conclusions. It also discusses the proposed ideas and strategies of obtaining methane gas from deep saline aquifers saturated with natural gas. Finally, some recommendations for future works are presented.

Praca naukowa nr 211 jest dostępna w trybie open acces.

Zamówienie wersji drukowanej:

Cena egzemplarza: 60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 12 617 76 32.

 

 
Normal 0 21 false false false PL X-NONE X-NONE