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Determination of the statistical similarity of the 
physicochemical measurement data of shale 
formations based on the methods of cluster analysis

The paper presents the application of the methods of statistical analysis to the determination of the similarity of 
measurement data, using boreholes providing access to shale formations as an example. The proposed methodol-
ogy is based on two statistical techniques: the factor analysis and the cluster analysis. The first method allows the 
reduction of the number of measurements variables in order to eliminate the redundancy of the data. The second 
one allows grouping the wells on the grounds of factor variables defining the similarity features of the analysed 
wells. The available results of geochemical measurements for nine wells providing access to shale structures have 
been used as measurement data.
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Określenie podobieństwa statystycznego fizykochemicznych danych pomiarowych 
formacji łupkowych na podstawie metod analizy klastrowej
W artykule przedstawiono zastosowanie metod analizy statystycznej dla określenia podobieństwa danych pomia-
rowych na przykładzie odwiertów udostępnionych w formacjach łupkowych. Proponowana metodologia zakłada 
zastosowanie dwóch technik statystycznych: analizy czynnikowej oraz analizy skupień. Pierwsza z metod pozwa-
la na redukcję ilości zmiennych pomiarowych w celu wyeliminowania redundancji danych, natomiast druga umoż-
liwia pogrupowanie odwiertów w oparciu o zmienne czynnikowe definiujące cechy podobieństwa analizowanych 
odwiertów. Jako dane pomiarowe wykorzystano dostępne wyniki pomiarów geochemicznych dla dziewięciu od-
wiertów udostępnionych w strukturach łupkowych.

Słowa kluczowe: formacje łupkowe, analiza czynnikowa, analiza klastrowa.

One of the basic elements of the identification and exami-
nation of hydrocarbon reservoir are the laboratory tests pro-
viding the necessary information on the geological structure, 
mechanical, physicochemical and petrophysical properties of 
the reservoir rock, the characteristics of reservoir fluids etc. 
Due to the amount and complexity of the available data, their 
statistical analysis constitutes a certain challenge. The problem 
is that the various types of measurement values (measured 
in various physical units) are correlated in a varying degree, 

which combined with the number of single calculations for 
each measurement value generates problems when interpreting 
and attempting to identify their internal structure. The use of 
the characteristics of descriptive statistics, i.e. the measure of 
placement, diversification, concentration or asymmetry seems 
to be insufficient, since it gives no detailed information about 
the variability of data following the depth, which constitutes 
significant information for the construction of geological and 
simulation models.
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Detecting the internal structure of the measurement data 
acquired for the individual boreholes would allow an attempt 
at the determination of the features of similarity between the 
wells. Searching for groups of similar wells has, e.g. certain 
significance in reservoir simulations, where the possibility 
to define a structure of the alternating layers of a simulative 
model allows the determination of the possible directions of 
the flow of reservoir fluids. Another possible application is 
the use of similarity features to predict the extraction from 
wells which provide access to shale formations in a situation 
of the lack of production test data.

The goal of the conducted analysis was an attempt to 
isolate groups of similar wells based on the available mea-
surement data. The proposed method of determining the 
degree of the similarity of wells based on the measurement 
data is based on two data exploration techniques: the factor 
analysis and the cluster analysis. The first one allows the 
reduction of the number of measurement variables in order 
to remove the redundancy of data; the second one allows the 
grouping of wells with respect to the variables resulting from 
the factor analysis.

The cluster analysis is a method allowing the detection of 
the structure of data by grouping then into clusters, meaning 

datasets with similar values. Depending on the used version of 
the method, it is possible to select the number of groups into 
which the data is to be divided (using the k-means method), or 
the so-called agglomeration, meaning the gradual merging of 
the grouped values according to the selected method of merg-
ing and the manner of measuring the distance. This method 
is usually used to group a set of measurements. There are 
however no obstacles against using it to group measurement 
vectors in a multi-dimensional space. However, this requires 
the preceding determination of these vectors in such a way 
that the resulting vector would contain as much information 
about the measurement values as possible.

The use of the proposed method of the categorisation of 
wells based on statistical similarity requires the implementa-
tion of the following stages:
•	 data “screening”,
•	 the elimination of correlated variables,
•	 the analysis of factor variables,
•	 grouping the factor variables into equinumerous datasets,
•	 cluster analysis.

The paper uses the geochemical data available for nine 
boreholes providing access to the shale formation as the 
original measurement data.

The cluster analysis method

The term cluster analysis covers several different algo-
rithms of the classification of datasets. In general, it could be 
said that its purpose is to group the elements of a dataset into 
reasonable, relatively uniform groups (classes, clusters). The 
basis for the grouping in the used algorithms is the similarity 

between the elements of a dataset, expressed as the function 
of similarity (the metric of distance). The methods used in 
the paper to assess the similarity of data (wells), which are 
the hierarchical agglomeration method and grouping using 
the k-means method, are presented below.

The hierarchical agglomeration method

The hierarchical agglomeration method allows the deter-
mination of the so-called hierarchical tree plot of the elements 
of the analysed dataset. The tree of connections is obtained 
as a result of the use of the algorithm of the progressive ag-
glomeration (meaning merging into subsets) of the subsequent 
datasets. In the first step of the procedure it is assumed that 
each case (measurement) constitutes a separate subgroup. 
Subsequently, a distance matrix is calculated (with a dimen-
sion of N, where N is the number of measurements), in which 
the smallest element is sought outside of the main diagonal. 
This distance (called the agglomeration distance) is locally 
minimal, since in each step of iteration it has a different value. 
After merging the subgroups for which the agglomeration 
distance is minimal, the distance matrix is prepared again, its 

maximum dimension now amounting to N-1. The presented 
procedure is repeated until obtaining a single cluster compris-
ing all N measurement points.

A characteristic feature of the method is that it does not 
require the a-priori assessment of the number of groups, but 
only the criterion of stopping the agglomeration procedure. 
However, it is necessary to select the manner of measuring 
the distance between groups (clusters) and the methods of 
their merger, meaning the agglomeration. The most frequently 
used measures of distance (metrics, e.g. euclidean distance, 
squared euclidean distance, city block distance, exponential 
distance) and agglomeration methods (e.g. single linkage 
method, ward’s method, complete linkage method) are pre-
sented below.
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Euclidean distance. Probably the most frequently selected 
measure of distance. Determined as a geometric distance in 
a multidimensional space. It should be noted that if Euclidean 
distances are calculated based on raw (not normalised) data, 
then the distance between any two measurements is not affected 
by adding new measurements to the measurement variable. 
However, because the differences in measurements between the 
measurement variables considerably affect Euclidean distances, 
it is recommended to conduct preliminary standardisation of 
variables in order to obtain variables of comparable scales.

Squared Euclidean distance. A modification of the Eu-
clidean distance which involves squaring it in order to assign 
greater weight to more distant objects.

City block (Manhattan) distance. A measure of distance 
calculated as the sum of differences measured along the 
dimensions. In most cases it provides similar results to the 
Euclidean distance. Let us note, however, that in the case of 
this measure, the impact of individual great differences (e.g. 
outliers) is suppressed, since they are not squared. 

Chebyshev distance. The measure of distance used in 
a situation when we wish to define two measurements as 
“different” when they differ in one dimension.

Exponential distance. A measure being the generalisation 
of the Euclidean distance. It allows the control of the weights 
assigned to measurement variables or measurements by using 
two real parametres.

The measures of distance (metrics)

The methods of agglomeration

The single linkage method (nearest neighbourhood). In this 
method, the distance between two clusters is defined by the 
distance between two closest measurements (in the sense of 
the adopted metric) belonging to different clusters. Accord-
ing to this rule, the measurements form clusters by merging 
into series, and the resulting clusters create long “chains”.

The complete linkage method (farthest neighbourhood). The 
method defines the distance between clusters as the greatest 
distance between any two measurements belonging to various 
clusters (i.e. “the farthest neighbours”). The method works 
in situations where objects form naturally separated clusters. 

Unweighted pair-group average. In this method the dis-
tance between two clusters is calculated as an average distance 
between all pairs of objects belonging to two different clusters. 
The method is effective both when the measurements form 
natural clusters as well as in a situation where they exhibit 
the nature of “chains”.

The weighted par-group average. This method is a modi-
fication of the group average method, involving the introduc-
tion of weights in the form of the number of measurements. 
It is used in situations when we want to avoid the extensive 
diversification of the number of measurements in the indi-
vidual clusters.

The unweighted par-group centroid. A method based on 
the definition of the centre of gravity of a cluster in a mul-
tidimensional space, defined by measurement variables. In 
this method, the distance between two clusters is defined as 
the difference between the centres of gravity.

The weighed par-group centroid (median). This method is 
the equivalent of the weighted average method for the centre 
of gravity method. It involves weighing the distance by the 
number of measurements belonging to the corresponding 
clusters.

The Ward’s method. A method using a variational ap-
proach to assess the distance between clusters, involving the 
minimisation of the sum of squared deviations of the sum of 
two clusters, which may be formed at each stage. Although 
deemed very effective, this method tends to create small-
sized clusters.

A characteristic feature of hierarchical methods is that once 
a decision to merge two clusters (subgroups) is made, it can-
not be changed until the end of the agglomeration procedure 
being in effect. It seems that in a case where we are dealing 
with organised datasets (the measurements of hydrocarbon 
reservoir parameters as a function of depth), such solution 
seems natural.

Grouping using the k-means method

One independent dataset grouping method is the k-means 
method, whose characteristic feature is the a priori assumption 
of the number of clusters. Let us assume that their number has 
been assessed in some manner. We now want to divide the 
dataset into a predetermined number of groups (clusters) which 
will be as different as possible. The action of the algorithm 

begins by picking two random k clusters, followed by mov-
ing the grouped objects between these clusters in order to (1) 
minimise the variability inside the clusters and (2) maximise 
the variability between the clusters. In other words, our goal is 
to obtain the maximum similarity in the group, accompanied 
by a maximum diversification between the groups.
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Due to the results of laboratory examinations, the proposed 
procedure of grouping borehole data is based on statistical data 
exploration techniques and consists of the following elements:
•	 data “screening”,
•	 the elimination of dependent variables (correlated),
•	 factor analysis,
•	 agglomerative analysis and grouping by means of the 

k-means method.
The first stage is the screening of input data, involving the 

selection of wells for which the same set of data is available, 
and the rejection of incomplete or uncertain data. As a result 
of the analysis of the available data, a set of geochemical 
data was prepared for nine boreholes providing access to 
shale structures (Silurian–Llandovery). The analysis was 
conducted based on the following measurements (measure-
ment variables):
TOC – total organic carbon content [wt%], 
Tmax – the temperature at which the maximum amount of hy-

drocarbons is created during cracking of kerogen [C],
S1	 – the amount of free hydrocarbons content present in 

a rock sample [mg HC/g of rock],
S2	 – the amount of hydrocarbons released during the original 

cracking of kerogen [mg HC/g of rock],
S3	 – the amount of carbon dioxide released during the de-

struction of organic substance (mg CO2/g of rock), 
PI	 – the so-called generation index,
PC	 – pyrolytic carbon content [wt%],
RC	– residual carbon content [wt%], 
HI	 – hydrogen index [mg HC/g TOC],
OI	 – oxygen index [mg CO2/g TOC].

The wells for which the above-mentioned data have been 
compiled are: L-1, O-2, O-3, B-1, W-1, K-1, T-1, G-1 and Z-1.

For the purposes of further analysis, correlations between 
the individual variables were examined for each well, which 

allowed the elimination of dependent (correlated) variables 
from the dataset. To this end, TOC was adopted as a refer-
ence variable, and subsequently those variables for which 
the coefficient of correlation with TOC was higher than 0.85 
were removed from further analysis. A sample Pearson cor-
relation matrix is presented in Table 1 (variables eliminated 
from further analysis are marked red). 

The presented operation allowed the reduction of the 
number of measurement variables from 10 to 6, with a rela-
tively small loss of information regarding their variability. 
Ultimately, further analysis was based on six measurement 
variables: TOC, Tmax, S3, PI, HI, OI.

At this stage of the analysis it is necessary to perform the 
standardisation of data, involving the introduction of all mea-
surement data into a space of variables in which the distance 
between measurements does not depend on the coordinates.

The standardisation was performed in accordance with 
the following formula:

 

where:
xí	 – standardised measurement variable,
x	 – the average value of all data for the given measurement 

variable,
Sx	– the standard deviation of all data for the given measure-

ment variable.

Further reduction of the number of measurement vari-
ables was conducted based on the so-called factor analysis, 
involving the replacement of measurement variables with the 
so-called factor variables. The idea of factor analysis is based 
on the assumption that the variables measured directly may be 
expressed as linear combinations of unobservable variables 

Data similarity analysis

Table 1. The matrix of correlation coefficients for measurement variables – the O-2 borehole

Variable Tmax S1 S2 S3 PI PC RC TOC HI OI

Tmax 1.00 0.50 0.44 0.10 –0.47 0.46 0.43 0.43 0.16 –0.47
S1 0.50 1.00 0.94 –0.02 –0.70 0.96 0.87 0.88 0.14 –0.67
S2 0.44 0.94 1.00 0.01 –0.79 1.00 0.97 0.98 0.04 –0.56
S3 0.10 –0.02 0.01 1.00 0.10 0.03 0.02 0.02 –0.18 0.20
PI –0.47 –0.70 –0.79 0.10 1.00 –0.78 –0.78 –0.78 –0.02 0.51
PC 0.46 0.96 1.00 0.03 –0.78 1.00 0.96 0.97 0.05 –0.58
RC 0.43 0.87 0.97 0.02 –0.78 0.96 1.00 1.00 –0.13 –0.52
TOC 0.43 0.88 0.98 0.02 –0.78 0.97 1.00 1.00 –0.11 –0.53
HI 0.16 0.14 0.04 –0.18 –0.02 0.05 –0.13 –0.11 1.00 –0.24
OI –0.47 –0.67 –0.56 0.20 0.51 –0.58 –0.52 –0.53 –0.24 1.00
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known as factor variables, the number of unobservable vari-
ables not having to be equal to the number of measurement 
variables. The factor analysis involves finding the factor 
variables based on the introduced measurement variables. 
Each factor variable combines within itself the information 
concerning several measurement variables, which considering 
the lack of correlation between them allows the significant 
reduction of the number of variables.

Depending on the predetermined number of factor vari-
ables, it is possible to retain the input amount of information 
on the variability of the input data. We have at our disposal 
three criteria assessing the number of factor variables taken 
into account: The Kaiser criterion, the Cattel criterion and the 
percentage criterion. According to the Kaiser criterion, one 
should take into account those principal components (factor 
variables) which have their eigenvalues higher than 1. On the 
other hand, the Cattel criterion (the so-called scree test) recom-
mends finding such a point on the plot of eigenvalues, to the 
right of which a gentle drop in the eigenvsalues takes place. 
The use of the percentage criterion means leaving as many 
factor variables as it is necessary to explain the arbitrarily 
selected percentage of the variances of primary variables. 
The problem is that when using the first two criteria, it is not 
uncommon to obtain various numbers of factor variables, or 
for their number to not guarantee retaining a sufficient amount 
of information about data variability. Moreover, in the case 
of the Cattel criterion we might get a chart for which it is 
impossible to unambiguously determine the threshold point.

For the reasons stated above, the selection of the num-
ber of factor variables was conducted based on the Kaiser 
criterion and the percentage criterion. Table 2 presents the 
eigenvalues as well as the cumulated and individual (values 
in brackets) percentages of the variance taken into account for 
the subsequent factor variables. Adopting the Kaiser criterion, 
two factor variables would be taken into account for the B-1, 
O-2, T-1, W-1 and Z-1 wells. For the remaining wells (L-1, 
G-1, K-1, O-3) the criterion indicates three factor variables. 
Because for the needs of further analysis it is necessary to 
assess the same number of variables for each well, the decisive 
role will be played by the percentage criterion. Adopting two 
factor variables means taking into account between 72% (the 
T-1 well) and 80% (B-1, Z-1) of the information on the vari-
ability of the data, while adopting three variables retains be-
tween 74% (the K-1 well) and over 92% (Z-1) of information. 
Because including the third variable causes a considerable 
increase in the amount of information taken into account (an 
average of 69% to 85%), three factor variables were adopted 
for further analysis. Such a solution is also supported by the 
fact that for the O-2, T-1 and W-1 wells the third eigenvalue 
is very close to one, which results in adopting three factor 
variables according to the Kaiser criterion.

For further analysis, it is necessary to ensure the equinu-
merosity of datasets for the analysed factor variables, which 
would allow the examination of the similarity of data vari-
ability (factor variables) over the whole measurement range. 
To this end, it is necessary to normalise the measurement 

Table 2. Eigenvalues, the number of factor variables, the cumulated and individual percentage of the explained variance

Borehole Eigenvalues
The number of factor variables

1 2 3 4

B-1 3.83/1.02/0.65 63.885% 80.81%
(16.93%)

91.63%
(10.82%)

95.91%
(4.28%)

L-1 2.52/1.43/1.02 42.00% 65.84%
(23.84%)

82.90%
(17.06%)

91.59%
(8.69%)

G-1 3.07/1.34/1.00 51.19% 73.61%
(22.42%)

90.25%
(16.64%)

96.19%
(5.94%)

K-1 2.09/1.30/1.08 34.89% 56.52%
(21.63%)

74.51%
(17.99%)

88.69%
(14.18%)

O-2 2.87/1.18/0.94 47.86% 67.55%
(19.69%)

83.28%
(15.73%)

91.08%
(7.8%)

O-3 2.16/1.28/1.08 36.05% 57.45%
(21.40%)

75.38%
(17.93%)

88.59%
(13.21%)

T-1 3.1/1.24/0.96 52.66% 72.32%
(19.66%)

88.38%
(16.06%)

94.18%
(5.8%)

W-1 2.91/1.21.0.98 48.51% 68.61%
(20.10%)

84.89%
(16.28%)

94.81%
(9.92%)

Z-1 3.40/1.45/0.68 56.67% 80.77%
(24.10%)

92.15%
(11.38%)

97.50%
(5.35%)
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depths, adopt the same number of measurement points for each 
well and interpolate the factor variables for new normalised 
measurement depths. In a situation where the boreholes differ 
considerably in the number of measurement points this may 
distort the results for wells which have considerably lower 
numbers of original measurements.

The next stage is conducting a cluster analysis for the 
examined wells. To this end, the k-means method and the 
hierarchical agglomeration method were used, adopting the 
determined factor variables as the grouped values. The analysis 
was conducted independently for each factor variable. Follow-
ing the analysis conducted using the k-means method, the results 
which are presented in Table 3 were obtained for 3 clusters.

In order to verify the obtained results, an agglomeration 
analysis was also conducted for various combinations of dis-
tance metrics and agglomerations. Sample results are presented 
in Figures 1–6. These figures present graphically the manner 
of merging wells depending on the distance between them in 
terms of the selected method of agglomeration and metrics 
(linkage distance). For example, in Figure 1 for a linkage 
distance equaling 6.5 each well constitutes a separate group, 
which means that the distance between any two wells is greater 
than 6.5. If we increase this distance to 7.0, the B-1 and O-2 
wells will be merged into one group. This means that the dis-
tance between them ranges between 6.5 and 7.0 (the precise 
value of the distance amounts to 6.6). By gradually increasing 
the threshold value of distance we get decreasing numbers of 
well groups. Therefore, by adopting various threshold values 
of distance we may perform divisions into 2, 3, 4 and a higher 
number of groups, e.g. for a linkage distance of  9.5 we get two 
well groups. One of them consists of the O-3 and Z-1 wells 
and the other one of all the remaining wells.

The presented manner of merging similar wells allows 
the assessment of the sequence of the merging (agglomera-
tion) of wells with respect to the similarity of the variability 
of data. Figure 7 presents the sequence for the second factor 
variable using the Euclidean norm and the centre of gravity 
method. Following the adopted assumptions, G-1 and Z-1 
turn out to be the most similar wells. Subsequent mergers 
were performed for the following wells: K-1, O-2, T-1, etc. 
However, it should be noted that the sequence of agglomera-
tion may depend on the adopted methods of measuring the 
distance between the variables and their merger.

Figures 1–2 present the results for the first factor vari-
able and the Euclidean norm after adopting the group aver-
age method and the Ward method, respectively. Although 
while dividing into two clusters in both cases we get a di-
vision identical to the k-clusters method (Table 3), we do 
notice certain differences when dividing into 3 groups. 
In each case the O-3 and Z-1 wells constitute one group. 
However, the division of the remaining wells differs de-
pending on the method of the analysis, with varying re-
sults also obtained during the agglomeration analysis. The 
difference involves the L-1 well, which in the case of the 
group average method constitutes one group with the B-1,  
O-2 and W-1 wells, and one group with G-1, K-1 and T-1 in 
the Ward method. Such differences are missing in the case 
of the second (Figures 3–4) and third factor variable (Fig-
ures 5–6), where each method results in an identical division 
for both two and three clusters.

The analysis of the similarity of wells was conducted based 
on the results of agglomeration for the Ward method and the 
Euclidean norm (see Figures 2, 4, 6). For the first factor vari-

Table 3. The grouping of wells using the k-means method

Cluster 1 Cluster 2* Cluster 3*

Variable 1 O-3
Z-1

B-1
L-1
G-1
O-2
W-1

K-1
T-1

Variable 2
B-1
L-1
O-3

G-1
K-1
O-2
T-1
Z-1

W-1

Variable 3

O-3
T-1
W-1
Z-1

L-1
G-1
K-1

B-1
O-2

* PLEASE NOTE: Assuming 2 clusters in the method resulted in mer-
ging clusters 2 and 3 into one group

Considering the definition of factor variables and the per-
centage of variance explained by each factor variable (Table 2), 
the obtained results may be interpreted in the following manner. 
The clusters obtained for the first variable result from taking into 
account the largest part of information involving the variability 
of data in the wells. Depending on the well, in the analysed 
case this means taking into account between over 34% (the 
K-1 well) and almost 64% (the B-1 well) of information about 
the variability of data. The information not taken into account 
by the first factor variable is taken into account by the second 
one within a range from almost 17% (the B-1 well) to 24% 
(the Z-1 well). The remaining factor variables form clusters 
depicting similarities of higher orders not taken into account so 
far. However, this means that for the subsequent variables we 
would get an independent division, i.e. there are no identical 
clusters for any two factor variables. This is a consequence of 
the fact that these variables are linearly independent and each 
of them, being a linear combination of the original measure-
ment variables, reflects their variability to a varying extent.
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Fig. 1. The result of agglomeration: first factor variable,  
group average method, Euclidean norm

Fig. 2. The result of agglomeration: first factor variable,  
Ward method, Euclidean norm

Fig. 3. The result of agglomeration: second factor variable, 
group average method, Euclidean norm

Fig. 4. The result of agglomeration: second factor variable, 
Ward method, Euclidean norm

Fig. 5. The result of agglomeration: third factor variable, 
group average method, Euclidean norm

Fig. 6. The result of agglomeration: third factor variable, 
Ward method, Euclidean norm
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The paper presents an attempt at the categorisation of wells 
which provide access to shale formations (Silurian–Llando-
very) with respect to the statistical similarity of laboratory 
data. The suggested method is based on two data exploration 
techniques: the factor analysis and the cluster analysis, for 
which two methods were used: the k-means method and the 
hierarchical agglomeration method. The conducted statistical 
analysis authorises us to formulate the following comments 
and conclusions:
•	 The methods of cluster analysis may be used in order 

to categorise the wells based on the measurement data. 
However, in order to guarantee the unambiguity of results, 
it is necessary to use methods for the reduction of the 
number of measurement variables. 

•	 When using the presented methods, the selection of mea-
surement data constituting a basis for the conducted analy-
sis may considerably affect the results. The paper uses 
biochemical data due to its availability over a relatively 
wide range of measurement variables and of the numbers 
of individual measurements.

•	 The effective reduction of measurement variables may be 
conducted using a two-stage process utilising the correla-
tion analysis and the factor analysis. The used combination 
of the above-mentioned methods enabled an over threefold 

Summary

reduction of the number of variables, while retaining 
control over the amount of lost information.

•	 Due to their definition, the cluster analysis based on 
factor variables makes it possible to perform indepen-
dent divisions with respect to the given factor variable. 
However, it does not enable the gradual particularisation 
of the categories when taking into account the subse-
quent variables. However, as part of the analysis of one 
variable, it is possible to assess the degree of similarity 
between the wells.

•	 The conducted comparative analysis indicated sufficient 
coherence of the obtained results depending on the used 
method of cluster analysis (the k-means method, the hier-
archical agglomeration method) and the number of groups.

•	 The results of agglomeration may depend on the adopted 
merging method and the manner of measuring the dis-
tance, however for the Euclidean norm and the two most 
effective merging methods, i.e. the group average method 
and the Ward method, the obtained results turned out to 
be almost identical to the results of the k-means method.

•	 A certain inconvenience of using the methods of cluster 
analysis to categorise the wells in a manner presented in 
the paper is the necessity to operate on equinumerous da-
tasets for various wells. In a situation where the numbers 

able difference between these wells. For the second factor 
variable (Figure 4), the wells form more uniform groups: the 
first group consists of 4 wells (B-2, L-1, O-3, W-1), while 
the second group consists of 5 (G-1, Z-1, K-1, O-2, T-1). As 
can be seen, taking into account the second factor variable 
caused the disclosure of differences between wells both for 
the first and the second group for the first factor variable. 
A division resulting from taking the third variable into ac-
count exhibits a certain similarity to the division obtained 
for the first factor variable. The difference involves the fact 
that the group which, for the first factor variable, consisted 
of the O-3 and Z-1 wells, has now been complemented by 
the W-1 and T-1 wells.

Limiting the similarity analysis to the first factor vari-
able, taking into account the majority of information about 
the variability of parameters, for splitting into three groups 
of wells we get a division presented in Table 3. According 
to Figure 2, the most similar wells are B-1 and O-2 (linage 
distance 6.6), which form a group with the W-1 well. The 
G-1 and K-1 wells also exhibit a great similarity (linkage 
distance 7.5), forming a group with the L-1 and T-1 wells. 
However, T-1 visibly stands out from its group (the linkage 
distance from the group equals 9.45).

Fig. 7. The sequence of agglomeration: second factor 
variable, centre of gravity method, Euclidean norm

able (Figure 2), we get an irregular division into two groups. 
In the first group there are the following wells: B-1, O-2, W-1, 
L-1, G-1, K-1 and T-1, while the O-3 and Z-1 wells are in 
the second group. Although the O-3 and Z-1 wells are in one 
group, the linkage distance between them is relatively large 
and is only slightly greater than the linkage distance for the 
T-1 well from the first group, which evidences a consider-

Agglomeration sequence

G-1

Z-1

K-1

O-2

T-1

L-1

O-3

W-1

B-1
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of cases (measurements in the available interval) differ 
considerably, a distortion of results may take place for the 

wells whose numbers of measurements are significantly 
smaller than the average.
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