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ABSTRACT: Geochemical analysis is an effective technique for detecting mineral deposits by examining element concentrations. 
Various statistical techniques have been developed to differentiate abnormal values from background values. A more accurate analysis 
can be obtained by employing multivariate statistical methods. The use of these methods enables the simultaneous analysis of changes 
in multiple variables. This research utilized correlation coefficients, cluster analysis, and factor analysis to demonstrate the genetic 
connections among various elements. The factor analysis method was additionally applied to generate multivariable maps and compre-
hensive multivariable results. Moreover, the stepwise factor analysis (SFA) method, an enhanced version of traditional factor analysis, 
was utilized to produce geochemical distribution maps. This technique entails initially recognizing and removing non-representative 
elements, followed by identifying the most important and impactful representative factors. This study demonstrates the efficacy of the 
SFA method when applied to geochemical data. This approach removes superfluous elements and increases the variance attributed 
to the predictive mineralization factor, thereby improving the geochemical halos. Additionally, this research evaluated multivariate 
analysis approaches alongside machine learning techniques. To achieve this, a multilayer perceptron neural network (MLP) was used 
to evaluate the levels of gold, silver, copper, lead, and zinc in the study area. The output variable represented the grade of a particular 
element individually, whereas the input variables encompassed the grades of the remaining four elements. To optimize the model, dif-
ferent quantities of hidden layers and a range of activation functions were applied. Ultimately, an ideal model was developed for each 
element. The model achieved accuracies of 95%, 88%, 73%, 80%, and 72% for the gold, silver, copper, lead, and zinc, respectively. 
The results show the significant computational efficiency of this method in assessing element grades. Finally, the element distribution 
maps generated by both methods indicate that the MLP approach identified the anomalous areas with higher accuracy.

Key words: cluster analysis, correlation coefficients, multivariate statistical methods, stepwise factor analysis, multilayer perceptron.

STRESZCZENIE: Analiza geochemiczna jest skuteczną techniką wykrywania złóż mineralnych poprzez badanie stężeń pierwiastków. 
Opracowano różne techniki statystyczne w celu odróżnienia nieprawidłowych wartości od wartości tła. Dokładniejszą analizę można 
uzyskać stosując wielowymiarowe metody statystyczne. Zastosowanie tych metod umożliwia jednoczesną analizę zmian wielu zmien-
nych. W niniejszym badaniu wykorzystano współczynniki korelacji, analizę skupień i analizę czynnikową w celu wykazania powiązań 
genetycznych między różnymi pierwiastkami. Metoda analizy czynnikowej została dodatkowo zastosowana do wygenerowania map 
wielu zmiennych i kompleksowych wyników wielu zmiennych. Co więcej, zastosowano metodę stopniowej analizy czynnikowej 
(SFA), ulepszoną wersję tradycyjnej analizy czynnikowej, w celu stworzenia map rozkładu geochemicznego. Technika ta polega na 
wstępnym rozpoznaniu i usunięciu pierwiastków niereprezentatywnych, a następnie zidentyfikowaniu najważniejszych i najbardziej 
wpływowych czynników reprezentatywnych. Przeprowadzone badania wykazały skuteczność metody SFA w analizie danych geoche-
micznych. Podejście to pozwala na eliminację zbędnych elementów oraz zwiększenie wariancji przypisanej predykcyjnemu czynnikowi 
mineralizacji, co prowadzi do lepszego zdefiniowania aureoli geochemicznych. Dodatkowo, w badaniu tym oceniono wielowymiaro-
we podejścia analityczne wraz z technikami uczenia maszynowego. Ponadto, w badaniu oceniono metody analizy wielowymiarowej 
w połączeniu z technikami uczenia maszynowego. W tym celu wykorzystano sieć neuronową – perceptron wielowarstwowy (MLP) 
do oceny zawartości złota, srebra, miedzi, ołowiu i cynku w badanym obszarze. Zmienną wyjściową była zawartość konkretnego 
pierwiastka, natomiast zmiennymi wejściowymi – zawartości pozostałych czterech pierwiastków. W celu optymalizacji modelu za-
stosowano różne liczby warstw ukrytych oraz szereg funkcji aktywacji. Ostatecznie opracowano model optymalny dla każdego pier-
wiastka. Modele osiągnęły dokładności wynoszące odpowiednio 95%, 88%, 73%, 80% i 72% dla złota, srebra, miedzi, ołowiu i cynku.  
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Wyniki te wskazują na wysoką efektywność obliczeniową tej metody w ocenie zawartości pierwiastków. Ponadto mapy rozmieszczenia 
pierwiastków wygenerowane obiema metodami wykazały, że podejście oparte na MLP identyfikowało obszary anomalii z większą 
dokładnością.

Słowa kluczowe: analiza skupień, współczynniki korelacji, wielowymiarowe metody statystyczne, krokowa analiza czynnikowa, 
perceptron wielowarstwowy.

Introduction

The geochemical study of waterways sediments is a method 
applied during the early stages of identifying and locating 
promising regions. One of the practical challenges in geo-
chemical research is assessing how representative a sample 
is for predicting the type of mineralization. To identify the 
best indicators and pathfinder elements for exploration, it is 
crucial to pinpoint and assess promising areas for a particular 
mineral. A proposed solution to this issue is the use of mul-
tivariate statistical analysis (Halfpenny and Mazzucchelli, 
1999; Chandrajith et al., 2001; Grunsky et al., 2009). Factor 
analysis is a multivariate analytical method frequently used 
in the geochemical investigation of waterway sediments to 
identify prospective regions for mineralization (Borovec, 1996; 
Reimann et al., 2002; Kumru and Bakaç, 2003; Van Helvoort 
et al., 2005; Sun et al., 2009). This approach can address spe-
cific limitations of factor analysis in geochemical exploration, 
improve geochemical halos, and produce a more effective 
geochemical map (Yousefi et al., 2012).

Statistical techniques can be employed to examine the 
relationship between data in geochemical studies. Before 
performing multivariate statistical analysis, univariate analy-
ses are required. Conducting these analyses allows for the 
examination of the data and the identification of certain char-
acteristics, such as abnormal samples in the study area. The 
aim of assessing heavy mineral sample results in multivariate 
statistical studies is to determine the type of mineralization 
present in the region (Govett, 2013). Considering the extent 
of the region, the most appropriate sampling technique is the 
collection of waterways sediments. However, heavy minerals 
investigations may also prove to be quite beneficial. In this 
method—unlike geochemical sampling, which seeks to evaluate 
the overall amount of an element within the rock and analyze 
its variability and distribution—the examination of the miner-
alogical phase emphasizes the presence of elements as distinct 
minerals. Hence, analyzing heavy mineral samples is utilized 
to pinpoint anomalous regions, identify mineral varieties and 
possible types of mineralization, understand mineralogical 
generative relationships, and assess potential paragenesis. The 
only limitation of this method is that the outcomes are partially 
quantitative and partially qualitative. Typically, this method 

can be highly advantageous when applied alongside the geo-
chemical technique. Taking this into account, and evaluating 
the advantages and disadvantages of this method with three 
goals in mind, heavy mineral sampling was conducted in the 
area. This involved confirming extractive anomalies through 
the hydrogeochemical approach, determining the dispersion 
phase of various elements, and addressing any information gaps 
arising from sampling method constraints or the generation 
of waterway geochemical findings. Therefore, integrating the 
findings from these two approaches can offer a more precise 
representation of the exploration environment.

Evaluating mineral grade is essential for assessing the de-
posit reserve; therefore, different stages of a mining project, 
such as feasibility, design, and planning, significantly depend 
on the accuracy of grade estimation. Geostatistical methods 
are frequently used to predict grade fluctuations and evaluate 
reserves in deposits; nevertheless, these techniques encounter 
several issues, such as uncertainty regarding the validity of 
assumptions, the determination of variographic parameters, 
being time-consuming, and the inability to provide accurate 
estimates under conditions of weak spatial structure of regional 
variability. As a result, this has led to the investigation of ar-
tificial intelligence-driven estimators for grade assessment in 
recent times. Research in this field involves the use of multilayer 
perceptron neural networks, support vector regression, and 
fuzzy neural systems for estimating copper grades (Valizadeh 
and Sharghi, 2014); optimization methods for neural networks 
focused on copper grade estimation (Tahmasbi and Hezarkhani, 
2011); the application of perceptron-genetic neural networks 
for analyzing limestone composition (Chatterjee et al., 2008); 
artificial neural networks for assessing gold grades (Mostafaei 
et al., 2023); evaluation of grade in a gold placer deposit horizon 
using a simple ray neural network (Samanta and Bandopadhyay, 
2009); predicting geochemical behavior of copper through 
artificial neural networks (Shirazy et al., 2020); estimating 
lead and zinc grades while assessing deposit reserves with 
artificial neural networks (Arinze et al., 2019); analysis of 
lignite impurities using a fuzzy neural system (Tutmez, 2009); 
determining platinum grade in a placer deposit horizon with 
support vector regression (Chatterjee and Bandopadhyay, 
2011); geochemical studies along with tonnage and grade via 
probabilistic neural networks (Singer, 2006); classification of 
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organic content in sediments (Weller et al., 2005); digitization 
and categorization of volcanic rock geochemical data using 
artificial neural networks (Lacassie et al., 2004, 2006), and 
employing neural networks for locating deposits (Singer and 
Kouda, 1996).

This study aims to explore the computational effective-
ness of the intelligent multilayer perceptron neural network 
approach for modeling element grades in the Janja polymetal-
lic gold deposit and to compare its results with multivariate 
statistical methods.

Study area

The Janja region is situated in Saberi town in the province 
of Sistan and Baluchistan (Figure 1). Saberi town is located 
at a geographic coordinates of 61° 29ˈ longitude and 31° 1' 
latitude, positioned in the southeast of Iran and to the northwest 
of Zahedan city.

The Sistan fault zone in eastern Iran is located in the north-
south-trending Cretaceous-Tertiary orogenic belt between the 
Central Iranian and Afghan continental blocks (Agard et al., 

2011). Rock outcrops in this area include sedimentary rocks 
such as sandstone and shale of the Shemshak Formation, 
Jurassic limestones, and marly shales, in addition to Quaternary 
sediments. Igneous outcrops in the area also include dacite and 
layered tuffs (Aghanabati, 2004) (Figure 2).

Figure 1. The location of the study area
Rysunek 1. Lokalizacja obszaru badań

Figure 2. Geological map of the study area
Rysunek 2. Mapa geologiczna obszaru badań
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Sefidabeh Formation unit
The oldest geological unit found in this region is the 

Sefidabeh Formation, dating from the Late Cretaceous to 
Early Paleocene epochs. In the study area, this unit appears 
as metamorphosed equivalents in the study region (hornfels 
and skarn). A Miocene-aged mass of diorite to quartz diorite 
has intruded into this sedimentary layer, causing contact meta-
morphism and resulting in the formation of hornfels and skarn 
from the Sefidabeh layer. The dominant alteration in this unit 
is propylitic, accompanied by the development of epidote, 
chlorite, and calcite. In some outcrops, localized sericite al-
teration is also present.

Hornfels unit
Due to the intrusion of the diorite-quartz mass in the area, 

the Sefidabeh sedimentary formation has undergone constant 
metamorphism, resulting in the formation of the hornfels 
unit. In surface observations, this unit is frequently seen on 
the diorite-quartz mass. The color of this unit varies from pea 
yellow to light green, depending on the quantity of epidote 
and chlorite present. Microscopic analyses indicate that this 
unit mainly consists of epidote, chlorite, quartz, and calcite.

Skarn Unit
This unit formed as a result of the intrusion of the diorite-

quartz mass into the Sefidabeh sedimentary formation. It typi-
cally develops with limited extent at the boundary of the diorite 
mass or in more reactive layers of the Sefidabeh formation, 
such as sections of impure limestone. The thickness of this 
unit ranges from a few tens of centimeters to several meters. 
In surface exposures, the formation appears dark green due 
to the abundant presence of epidote and chlorite. The primary 
minerals composing the skarn unit comprise epidote, chlorite, 
calcite, and garnet.

Diabase dyke unit
This unit has limited extent in the study area. Only two 

minor exposures of these dykes have been observed in the 
Hornfels unit located in the southern part of the area. In sur-
face outcrops, the unit appears dark gray to black, and many 
of its exposures are weathered and fractured. The unit exhibits 
a northeast-southwest orientation, and its thickness ranges 
from 1 to 3 meters. Microscopic analyses show that the unit 
comprises faceted pyroxene crystals and plagioclase within 
a more finely crystalline groundmass of the same composition. 
The dominant alteration in these dykes is weak chloritization.

Quaternary sedimentary units
These are the most widespread units in the area and consist 

of two components. One component comprises coarse sedi-

ments, which are most prevalent, while the other consists of 
alluvial sediments found in the channels of rivers and streams 
in the area.

Materials and methods

Geochemical sampling
The design of the sampling network is a crucial phase in 

geochemical studies. Its effectiveness depends on the type of 
exploratory deposit and the scale of the study. To achieve this 
goal, it is essential to collect and integrate all relevant informa-
tion, including bedrock classification (igneous, sedimentary, 
and metamorphic), intersections between igneous masses and 
sedimentary layers, varieties of metamorphic facies, and con-
cealed intrusive bodies. In developing the sampling network, 
information from the 1:100,000 Khunik geological map, along 
with topographic maps, tectonic structures, and aerial and satel-
lite images, was collected and integrated. As a result, 153 river 
sediment samples were collected from a 144 km2 area, yielding 
an estimated sampling density of approximately 1.1 samples 
per square kilometer (Figure 3). The samples were analyzed 
using the ICP-AES method for 44 elements. It is important to 
note that the Fire Assay preparation technique was employed 
for gold analysis. Furthermore, the heavy mineral sampling 
network was designed to collect one sample for every 2.4 km2. 
As a result, 59 heavy mineral samples were planned and col-
lected, taking into account the necessary quantity of samples 
required to generate heavy mineral samples in both outcrop 
and plain areas. During field operations, a total of 7 liters of 
unsieved samples were collected. Collecting heavy mineral 
samples from locations where coarse particles accompany finer 
ones yields improved results. Sampling involved excavating 
holes with diameters of 30–40 cm and depths of 30–50 cm, 
collecting more than 5 kg of soil, which was sieved through 
a 20 mesh to obtain the final sample. The collected samples 
were prepared following volume measurement, mud washing, 
and drying, using bromoform liquid in the heavy mineral lab. 
Subsequently, with the use of a magnet, the recovered miner-
als were classified into three groups: magnetic (AA), weakly 
magnetic (AV), and non-magnetic minerals. The results were 
then reported according to the percentage of minerals identified 
using a binocular microscope.

Factor analysis
The observable random vector x = (x1, x2, ... , xp)T, which has 

p components, has a mean represented by μ = (μ1, μ2, ..., μp)T,  
and a covariance matrix denoted by ∑ = (σij)P∙P. The fac-
tor model suggests that x is linearly dependent on several  
m-dimensional vectors of unobserved variables f = f1, f2, ... , fm,  
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known as common factors, and a p-dimensional vector of un-
observed variables ε = ε1, ε2, ..., εm, known as specific factors. 
The matrix representation of FA is given by x – μ = Af + ε,  
where A = (σij)P∙m (i = 1, 2, ..., p; j = 1, 2, ..., m), is known as 
factor loading.

In FA, the goal is to account for the covariance or correla-
tion between variables. The covariance matrix is represented as  
∑ = AAT + DÂ, the variance matrix is var( ) = x ai j

m
ij i∑ =1
2 2σ , and 

the common variance is h ai j
m

ij
2

1
2 = ∑ = .

Multilayer Perceptron Neural Network

Artificial neural networks are inspired by the complex 
structures of the human brain, in which millions of neu-
rons communicate to solve problems and store informa-
tion. The task of a neural network is to learn. This process 
begins with training, or gaining experience, which is car-
ried out using a series of desired input and output data.  
In this way, a set of correct inputs and outputs is presented 
to the network, and the neural network uses these inputs to 
construct a complex mathematical model that generates the 
correct response when provided with new inputs (Krose and 
Smagt, 1996).

The multilayer perceptron neural network is a multi-layered 
feedforward neural network. In this network, spatial rela-
tionships between input and output variables are detected by 
a group of processing units called neurons,  organized into 
input, hidden, and output layers. This network detects the 
spatial variability of mineral grade using mapping functions ɸ, 
created by a set of association weights between the inputs and 
the output (Mahmoudabadi et al., 2009). The output o (element 
grade) can be considered a function of the association weights 
w:o = ɸ(x) (Dutta et al., 2010). Optimization algorithms can 
be used to determine the optimal structure of a multilayer 
perceptron neural network in terms of the number of hidden 
layers and the number of neurons in those layers.

Discussion

Data processing
Exploration objectives can be achieved through the analysis 

of geochemical data. In geochemical exploration, numerous 
samples and multiple factors must be considered. As a result, 
the application of statistics and probability in data analysis has 
become essential. Data processing is considered acceptable 
when the laboratory error (assessment of repeated samples)  

Figure 3. Geological sampling network map of the study area (Ebdali and Hezarkhani, 2024)
Rysunek 3. Mapa geologicznej sieci pobierania próbek na badanym obszarze (Ebdali i Hezarkhani, 2024)
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is below 10%. By incorporating additional methods such 
as heavy mineral studies, anomaly control, and comparison 
of geochemical anomalies with data processing results, the 
accuracy and reliability of the analysis can be improved.  
The data management procedure includes organizing raw 
laboratory data, substituting censored data, conducting statis-
tical analyses, detecting outliers, and presenting results using 
graphs and tables.

Analysis error determination
To effectively use the measurement results, it is essential 

to understand the degree of confidence in the measurements. 
Quality control tests are performed to identify any errors in 
the preparation and analysis steps. The reliability of measure-
ment data generally depends on the magnitude of both random 
and systematic errors. It is important to note that the sampling 
error is primarily systematic, while random error arises from 
natural variability and is present to some extent in all types of 
measurements (Parsons and Clegg, 2009). The relative error 
of  analyses is calculated using Equation (1):

	 e n x y x yi i i i= ∑ − +  ×2 100( ) 	 (1)

where:
e – relative error value,
n – number of repeated samples,
xi, yi – values measured in the main sample and its corre-

sponding repeated sample.

The sample analysis error values were calculated for dif-
ferent elements (Table 1). The results show that cadmium and 
sulfur have errors exceeding 20%, while all other elements 
have errors within acceptable limits.

Table 1. Mean calculated error between two pairs of correspond-
ing repeated samples using the ICP-AES technique to evaluate lab 
precision
Tabela 1. Średni obliczony błąd między dwiema parami  
odpowiednich powtarzających się próbek przy użyciu techniki 
ICP-AES do oceny dokładności badań laboratoryjnych

Elements Average Lab Error Elements Average Lab Error
Ag 13 Mo 13
Al 3 Na 2
As 11 Ni 6
Ba 3 P 5
Be 3 Pb 15
Ca 4 S 28
Cd 21 Sb 6
Ce 3 Sc 3
Co 5 Sr 2
Cr 11 Th 3
Cu 7 Ti 1
Fe 3 U 6
K 3 V 3
La 3 Y 4
Li 4 Yb 4
Mg 5 Zn 6
Mn 4 Zr 4

Censored data estimation
Censored data refers to values that lie beyond the sensitivity 

thresholds of the device, either exceeding the upper threshold 
or falling below the lower threshold. In the context of relative 
measurements, such as differentiating between background and 
anomaly, the presence of censored data can lead to inaccurate 
evaluations. To address this issue, estimated values should 

Table 2. Number of censored data and their replacement values in the dataset
Tabela 2. Liczba danych cenzurowanych i ich wartości zastępcze w zbiorze danych

Element Unit Detection Limit Total Sample No. of Censored Percentage [%] Replace Value
Au ppb 5 153 135 88.2 3.75
Ag ppm 0.1 153 0 0 0.075
Al ppm 100 153 0 0 75
As ppm 0.5 153 1 0.6 0.375
Ca ppm 100 153 0 0 75
Cd ppm 0.1 153 0 0 0.075
Ce ppm 1 153 0 0 0.75
Co ppm 1 153 0 0 0.75
Cr ppm 1 153 0 0 0.75
Cu ppm 1 153 0 0 0.75
Fe ppm 100 153 0 0 75
La ppm 1 153 0 0 0.75
Li ppm 1 153 0 0 0.75
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be used to substitute censored data. Various techniques can 
be employed to estimate censored data values, one of which 
is the simple substitution method (Sanford et al., 1993). This 
approach entails replacing values exceeding the sensitivity 
threshold with 4/3 of that threshold, and those below it with 
3/4 of the threshold. If the proportion of censored data is less 
than 10% of the total dataset, this method is usually considered 
acceptable. The outcomes of substitution for the censored are 
presented in Table 2. The table indicates that only 2 elements 
contain missing data. For gold, 88.2% of the data is censored 
and cannot be substituted, with only the samples containing 
the censored data being excluded from this element, allowing 
the remaining available data to be used. In addition, in the 
case of magnesium, 20 samples were censored, representing 
13% of the total.

Outlier values elimination
Outlier are values that lie significantly outside the data 

range and are considered as either very low or very high values. 
These values are important, as they might indicate anomalies 
associated with mineralized areas. However, they may also 
arise from substantial sampling or laboratory errors.

Most statistical distributions in exploratory projects are 
non-normal and typically exhibit right-skewed distributions 
(Reimann and Filzmoser, 2000). Distributions of this kind 
emphasize the importance of the values located on the right 
side of the distribution. These exceptionally high values may 
represent anomalies (on a regional scale) or rich ore deposits 
(on a local scale). The box plot diagram was utilized in this 
study to identify outlier values. Boxplots serve as a method 
to illustrate the data distribution within statistical populations, 
highlighting quartiles and the interquartile range. These graphs 
show the minimum, 25th percentile, median, 75th percentile, 

and maximum values, identifying outlier or extreme samples 
using the interquartile range, where outlier samples satisfy 
equations (2) and (3).
	 Outlier = 1. 5 (75th – 25th)	 (2)
	 Extreme = 3 (75th – 25th)	 (3)

Samples that exceed these thresholds are classified as outli-
ers or extreme values. The elongation of the tails in boxplots 
may suggest the presence of samples exhibiting unusual values. 
From the boxplots, it is possible to identify the detection limit 
level, interquartile range, median position, spread of outliers 
and extreme values, distinctions between normal and anomalous 
distributions, as well as potential for unusual values.

It is important to emphasize that during Pearson's correlation 
analysis and cluster analysis, outliers were adjusted solely by 
replacing them with the highest outlier value to compute the 
standard function F. Furthermore, in differentiating anomalies 
from background values, mean values and standard deviations 
were calculated while retaining outlier values, and no substi-
tutions were made in the computations. Once the censored 
values were replaced, a boxplot was generated for different 
elements. The boxplot illustration presents gold and silver as 
examples (Figure 4).

Data normalization
It is common for geochemical data to exhibit a log-normal 

distribution, while a normal distribution is rare. Therefore, prior 
to performing calculations, it may be necessary to convert the 
abnormal data into normally distributed data through the use 
of transformations. To achieve this, logarithmic transforma-
tion, three-parameter transformation, generalized exponential 
transformation, or other available techniques can be employed 
(Pawlowsky-Glahn et al., 2015). Nonetheless, logarithmic trans-
formation is often used due to its simplicity of implementation.

cont. Table 2/cd. Tabela 2

Element Unit Detection Limit Total Sample No. of Censored Percentage [%] Replace Value
Mg ppm 100 153 20 13 133
Mn ppm 5 153 0 0 3.75
Mo ppm 0.5 153 0 0 0.375
Ni ppm 1 153 0 0 0.75
P ppm 10 153 0 0 7.5

Pb ppm 153 153 0 0 0.75
S ppm 50 153 0 0 37.5

Sb ppm 0.5 153 0 0 0.375
Sc ppm 0.5 153 0 0 0.375
Th ppm 0.5 153 0 0 0.375
V ppm 1 153 0 0 0.75

Yb ppm 0.2 153 0 0 0.15
Zn ppm 1 153 0 0 0.75
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When the data follow a normal distribution, the average of 
the sample group provides a more accurate estimate than the 
average of the entire population. Despite the advantages of 
converting the data distribution to normal, such transformation 
should not always be applied. The decision to use a transfor-
mation depends on a specific context. Transformations may 
be appropriate if a desired outcome can be achieved using the 
transformed values, particularly when there are no limitations 
in accessing the or when reverse transformation can be per-
formed easily. If the estimation derived from the initial data 
is sufficiently precise, it is preferable to avoid transformation 
when possible. The F function is a statistical measure used to 
determine whether a normal distribution exists among differ-
ent elements. This function is calculated using equation (4).

	 F = 2│Sk│+│3 – K│	 (4)

where:
Sk – Skewness value,
K – amount of stretching in the distribution of data.

Hence, a distribution (raw or logarithmic) with an F value 
closer to zero is considered more typical. Equations (5) and 
(6) are used to calculate the mean and standard deviation by 
applying inverse transformations in a normal log transforma-
tion to find the values of X and S.

	 S X e= × −( )β 2

1 	 (5)

	 X e= +α β( / )2 2 	 (6)

where:
α – mean of logarithmic data,
β – standard deviation of the logarithmic data.

The geochemical data were examined after replacing outlier 
values and applying logarithmic transformation. By examin-
ing the shape of the distribution function, the maximum value 
of each element, and the skewness of its distribution, it was 
possible to assess whether a given element has a favorable 
detection potential. In this region, zinc, lead, arsenic, copper, 
and cadmium exhibit significant skewness and peak values 
relative to global background levels, indicating a relative 
potential for mineralization.

Outlier values may suggest the occurrence of a special 
geological phenomenon. Unusual concentrations of elements 
such as zinc, lead, arsenic, silver, cadmium, and antimony 
may indicate metal mineralization or localized concentration 
of these elements. Variations in lithological units, such as the 
presence of carbonate rocks in the region, may result in the 
occurrence of elements such as potassium, cerium, calcium, 
and vanadium.

Establishing the normality of each element can be done by 
examining its minimum, maximum, average, median, standard 
deviation, and skewness. Based on this analysis, silver and 
copper exhibit nearly normal conditions, while lead and zinc 
show standard logarithmic conditions.

Multivariate statistical calculations
Multivariate analysis refers to the concurrent assessment of 

multiple variables. Based on this definition, many multivari-
ate methods are fundamentally built upon and have evolved 
from univariate and bivariate analyses (Denis, 2021; Maiti, 
2022; Mardia et al., 2024). Each distinct group of elements 
exhibits a degree of sensitivity that is relatively similar under 
different environmental conditions. Identifying the shared 
genetic connections among different elements can enhance 

Figure 4. Boxplot of gold (a) and silver (b)
Rysunek 4. Wykres pudełkowy dla złota (a) i srebra (b)
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our understanding of changes in geochemical environments. 
These connections can serve as a straightforward reference for 
interpreting deposit types, while conversely, the accumulation 
of some elements might suggest the presence of unimportant 
and misleading anomalies. In general, grasping the genetic 
relationships among elements is crucial for the accurate analysis 
of geochemical information.

Overall, multivariate statistical analyses offer two main 
advantages. The composite halos obtained through multivariate 
statistical methods show a greater correlation with the deposit's 
structural features, geology, and origin, resulting in a more 
clearly defined relationship between the elements. Moreover, 
by employing composite halos, random errors can be reduced, 
and the quantity of data and maps minimized, leading to more 
effective outcomes. In this research, genetic connections were 
illustrated through correlation coefficients among different 
components, along with cluster analysis and factor analysis. 
The factor analysis technique is also employed for generat-
ing multivariable maps and achieving overall multivariable 
outcomes.

Correlation coefficients calculation
Opting for two-variable studies as the main approach fa-

cilitates the detection and examination of genetic and second-
ary relationships among variables. The examination of two 
variables includes analyzing the scatter plot and calculating 
the correlation coefficient between them (Ghannadpour and 
Hezarkhani, 2015; Ghannadpour et al., 2015). The correla-
tion coefficient and its variations are frequently employed in 
exploratory stages, particularly in geochemical investigations. 
When determining correlation coefficients, it is essential to 
assume that the data follow a normal distribution, similar to 
other statistical measures. If the data distribution is not normal, 
Spearman's non-parametric correlation coefficient is used to 
calculate the correlation coefficients, irrespective of the data 
distribution function. The correlation coefficient matrix was 
computed by examining the chemical composition of 153 river 
sediment samples for various elements. Based on this infor-
mation, copper is closely associated with lead, zinc, arsenic, 
and cadmium. Consequently, rather than anomalies in these 
elements, copper mineralization can be observed alongside 
other essential elements such as lead and zinc, as well as 
hydrothermal alteration. The correlation between copper and 
lead is 0.89, whereas with zinc it stands at 0.95.

A significant correlation exists between lead and zinc, along 
with cadmium and arsenic, which may indicate the possibility 
of vein mineralization in the area. The correlation of cadmium 
and arsenic with lead is 0.90 and 0.96, respectively, whereas 
with zinc it is 0.82 and 0.95. Further correlations include the 
relationships between iron and chromium, cobalt, manga-

nese, and vanadium, which have little ore value and probably 
originate from the lithology and rocks in the surrounding area. 
It is important to note that these results reveal polymetallic 
mineralization of lead, zinc, and copper in the exploration 
region, resulting in the formation of a significant system as 
indicated by the data.

Cluster analysis
Cluster analysis is a multivariate technique intended to 

categorize variables or samples by their similarities within the 
group and distinctions between groups. In this instance, the 
clustering algorithm and the correlation coefficient served as 
the main methods for assessing similarity (Barnett et al., 2014). 
The results of the centroid cluster analysis for the geochemical 
data are classified into 3 categories: a) The first group includes 
lead, zinc, copper, cadmium, and arsenic. In this group, base 
metals and arsenic elements are primarily identified as tracers, 
possessing the highest mineralization value and aligning with 
the polymetallic mineralization discovered in the explora-
tion zone. b) The second category includes iron and cobalt 
associated with vanadium, indicating mafic to intermediate 
intrusive bodies in the area, alongside the distribution of the 
porphyry diorite mass. c) The third group includes manganese 
and chromium, along with cerium and ytterbium, which are 
probably related to the intrusive bodies in the region and lack 
mineralization significance.

Factor analysis
Geochemical reference layers are developed and established 

through geochemical multivariate analyses to identify the 
optimal reagent or mixture of reagents for the desired miner-
alization. Multivariate analyses can evaluate the significance 
of different combinations of geochemical variables (elements) 
more effectively (Garrett and Grunsky, 2001; Carranza, 2004, 
2010). Considering that mineralization is an uncommon oc-
currence, and that this is merely one of the numerous factors 
influencing the alteration of substances in waterway sediments 
(Bonham-Carter et al., 1989; Carranza and Hale, 1997), de-
ducing the optimal combination of geochemical reagents for 
a particular mineralization type is likewise a challenge.

Factor analysis is frequently utilized in the analysis of 
geochemical data. It seeks to explain variability in a set of 
multivariate geochemical data. This process entails reducing 
the dimensions of the data and variables to reveal hidden con-
nections among elements by identifying a specific number of 
factors (Tripathi, 1979). Factor analysis is a statistical method 
that uses the complete data matrix, such as the correlation or 
variance-covariance matrix of variables, to produce a linear 
factor. Each component in the linear relationship is given a co-
efficient that reflects its importance within the intended factor. 
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Although it is recognized that geochemical data seldom follow 
a normal distribution, factor analysis, like many statistical 
techniques, is ideally performed on data that are either normally 
distributed or approximate normality. To improve the outcomes 
of factor analysis and identify the most effective multi-element 
combinations that indicate mineralization, a refined stepwise 
factorial analysis (SFA) technique was developed to determine 
the ideal multi-element combination(s) representing a particu-
lar type of mineralization. This method consists of two main 
phases known as "clean factor extraction" and "evaluation of 
multi-element effects including importance and calculation of 
reliable factor scores". Each of these primary phases contains 
multiple internal stages.

Clean factors identification
At this stage, factor analysis is initially conducted on the 

main data set that encompasses all the chosen elements. This 
phase essentially constitutes the first stage of factor analysis. In 
the results of the initial stage, elements that do not contribute 
to any factor based on the chosen threshold are excluded, as 
the presence or lack of even a single element in the input data 
set can significantly influence the result. These components 
can be labelled as disruptive geochemical elements and factors 
that hinder analysis. Therefore, it is essential to remove these 
elements from the dataset and perform a second-stage factor 
analysis. This updated analysis may uncover various factors 
depending on the combinations of elements, their coefficients, 
and the sample's score values. If, during the second stage, there 
are components that still fail to meet the defined threshold 
for involvement in any factor, they must be removed from 
the dataset. Subsequently, factor analysis must be performed 
again. If every component in the second stage can be assigned 
to a factor, then the initial phase of analysis is complete, and 
the extracted factors will be free from any interfering elements.

Usually, traditional factor analysis results in several fac-
tors with different combinations of elements, whereas the 
SFA technique provides clearer and more reliable outcomes 
by identifying and discarding non-representative elements. 
In relation to this issue, and considering the data and the type 
of mineralization sought, one or more significant key factors 
can be identified. Nonetheless, in comparison with traditional 
factor analysis, the number of factors is reduced, the range of 
changes covered is expanded, and, importantly, the predictive 
accuracy is improved.

In factor analysis, the primary emphasis is on removing 
geochemical noise that continuously hinders the statistical 
assessment of the data. Consequently, clean factors were es-
tablished by eliminating geochemical noise, resulting in the 
identification of ultimate mineralization-representative factors 
that guide the mineralization process. Moreover, since a single 

factor influences various variables, methods exist to simplify 
the interpretation of factors while preserving the same degree 
of involvement. These methods involve factor rotation, specifi-
cally employing the Varimax technique for data rotation in this 
research (Kaiser, 1958). This method applies the KMO value 
to evaluate the accuracy of the factor analysis results and to 
verify the adequacy of the data sample size. High KMO values 
support factor analysis, whereas low values hinder it. KMO 
values near 0.9 are considered very suitable for factor analysis, 
while values close to 0.8 are deemed adequate. Values near 0.7 
suggest balanced factor analysis, values close to 0.6 represent 
average adequacy, and values at or below 0.5 are considered 
insufficient. It is essential to note that the factor analysis was 
performed on log-transformed data, and the factor thresh-
old was established at 0.5 within this interval. According to 
Table 3, the KMO value derived from the SFA is 0.79, which 
falls within the suitable category as defined in geostatistical 
literature (Barrie et al., 2023).

Table 3. KMO parameter value in the study area dataset
Tabela 3. Wartość parametru KMO w zbiorze danych badanego 
obszaru

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.79

Bartlett’s Test of Sphericity

Approx. Chi-Square 4579.08

Df 105

Sig. 0

Factor analysis was performed exclusively on arsenic, 
cadmium, cerium, cobalt, chromium, copper, iron, manganese, 
lanthanum, nickel, lead, sulfur, ytterbium, vanadium, and zinc. 
Analysis of these 15 elements resulted in 4 factors, as shown 
in Table (4). This analysis includes only the clean factors, with 
all geochemical interferences removed.

According to Table 4, the first factor accounts for around 
50.3% of the variance and includes cerium, cobalt, chromium, 
copper, manganese, lanthanum, lead, and zinc. This factor 
distinguishes two separate categories of elements. The main 
group is mainly influenced by elements in the silicate minerals 
network (lanthanum, cerium, cobalt, and nickel), whereas the 
secondary group is influenced by elements found in ore-forming 
minerals (lead, zinc, and copper). These elements may be found 
in both igneous rocks and mineral veins. In general, this factor 
is particularly important due to the presence of copper, lead, 
and zinc. The second factor, which represents about 23.65% 
of the variance, includes arsenic, cadmium, copper, lead, and 
zinc. The presence of these elements together is significant. 
This factor is associated with the development of ore in poly-
metallic hydrothermal veins or intrusive bodies, which aligns 
with expectations based on their quality in geochemical data. 
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The third factor includes sulfur and ytterbium. This factor is 
unlikely to be related to mineralization, given the common 
values in this area. The fourth factor includes nickel, which 
accounts for around 6% of the variance and does not appear to 
be particularly significant for exploration based on its values 
in the exploratory area.

Multilayer perceptron estimator
Data augmentation

As previously noted, the database of the study area con-
tained only 153 geochemical samples. This posed a significant 
problem due to the limited number of samples, potentially 
resulting in imbalances in error calculations. The high imbal-
ance in computations can hinder the classification rules, lead-
ing to inadequate model estimation and accuracy assessment. 
Moreover, a limited number of samples in the training data 
causes models to struggle to capture the inherent complexity 
of the input-output relationships in high-dimensional data. 

To address these problems and enhance the training of machine 
learning models, data augmentation techniques were employed 
to expand the data space by generating artificial samples based 
on the fundamental structure of the actual data (Chatterjee 
et al., 2022). Various data augmentation techniques have been 
proposed, including flipping and rotation (Simard et al., 2003), 
clipping and scaling (Dieleman et al., 2015), and altering the 
intensities of the RGB channels (Krizhevsky et al., 2012). The 
key principle of data augmentation is that the applied transfor-
mations should not change the semantic meaning of the labels 
(Hinton et al., 2012). A suitable data augmentation technique 
is presented that maintains both the diversity and geological 
integrity of the augmented data. The basic concept behind this 
augmentation technique is to incorporate random noise into 
the data while ensuring the information remains geologically 
meaningful. Neural networks such as the multilayer perceptron 
emphasize the spatial distribution and correlations of the data 
rather than the values at specific points (typically the cell for 
deposit or non-deposit). Therefore, adding noise to the data 
can not only preserve the majority of its spatial features but 
also address the issue of limited training samples. In this re-
search, two data augmentation techniques were used: a) Adding 
noise: In this technique, random noise drawn from a normal 
distribution is added to the values (including Au, Ag, Cu, Pb, 
and Zn). This noise is scaled to the standard deviation of the 
values, giving the data a more natural and realistic appear-
ance. b) Shifting coordinates: In this method, the coordinates 
(X, Y, and Z) are randomly shifted within a designated interval 
(default 0.1), helping to generate data variability and simulate 
different conditions. Ultimately, the original data were merged 
with the newly generated data from these two techniques, 
increasing the total data count from 153 to 4105.

Modelling
According to geochemical sampling of the study area, the 

grades of gold, silver, copper, lead, and zinc were available. 
Initially, the mean and standard deviation were used to distin-
guish the anomalous population from the background (Table 5). 

Using the derived intervals, the elemental grade values 
were categorized into 5 classes, ranging from class 1 (of least 

Table 4. Result of factor analysis conducted in the study area
Tabela 4. Wyniki analizy czynnikowej przeprowadzonej w obsza-
rze badań

Factor
Component

1 2 3 4
As   0.574   0.700 –0.017   0.095

Cd   0.514   0.839 –0.014 –0.019

Ce   0.766 –0.332   0.421   0.190

Co   0.886 –0.341 –0.199 –0.026

Cr   0.837 –0.35   0.147   0.091

Cu   0.733   0.616   0.047 –0.088

Fe   0.846 –0.346 –0.182 –0.264

La   0.804 –0.355 –0.012   0.238

Mn   0.934 –0.274   0.158 –0.104

Ni   0.411 –0.128 –0.486   0.736

Pb   0.602   0.782 –0.017   0.022

S –0.166   0.167   0.679   0.281

Yb   0.720 –0.338   0.509 –0.122

V   0.693 –0.334 –0.403 –0.260

Zn   0.741   0.650 –0.047 –0.068

Table 5. Classification values in the Rose method
Tabela 5. Wartości klasyfikacji w metodzie Rosego

Classified Ag [ppm] Au [ppm] As [ppm] Cu [ppm] Pb [ppm] Zn [ppm]

MIN_AVE 0.12_0.25 0.005_0.009 6_11.6 19_26.2 9_22.1 46_69.8

AVE_AVE + STDEV 0.25_0.32 0.009_0.013 11.6_17.2 26.2_29.3 22.1_36.8 69.8_82.4

AVE + STDEV_AVE + 2STDEV 0.32_0.39 0.013_0.018 17.2_22.9 29.3_32.3 36.8_51.4 82.4_95.1

AVE + 2STDEV_AVE + 3STDEV 0.39_0.46 0.018_0.022 22.9_28.6 32.3_35.4 51.4_66.1 95.1_107.7

AVE + 3STDEV_MAX >0.46 >0.022 28.6_45.7 35.4_36 66.1_128 >107.7
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exploration importance) to class 5 (of greatest exploration 
importance). Subsequently, to assess the grade using the intel-
ligent multilayer perceptron method, the model output was the 
grade of one of the elements (target variable), and the model 
input consisted of the grades of the other four elements. Next, 
the hyperparameters influencing the performance of the mul-
tilayer perceptron estimator for assessing the grade in the test 
set were determined for each element (Table 6).

It is important to highlight that Adam is a widely used adap-
tive learning rate optimization algorithm in machine learning, 
offering improvements over traditional gradient descent meth-
ods. It calculates individual learning rates for each parameter 
based on both momentum (smoothing updates) and RMSProp 
(normalizing updates based on squared gradients). This solver 
operates based on an initial setup. The procedure is as follows: 
initialize parameters θ, the first moment vector m0 = 0, and 
the second moment vector v0 = 0. Set the learning rate α, the 
exponential decay rates β1 and β2, and a small constant ϵ. This 
solver uses the update rule for each iteration t:

1.	 	Calculate gradient: g ft t=∇θ θ( );

2.	 	Update first moment estimate: mt = β1mt−1 + (1 − β1)gt;

3.	 	Update second moment estimate: vt = β2vt−1 + (1 − β2)gt
2;

4.	 	Compute bias-corrected first moment estimate:	   
m mt t

t= −1 1β ;

5.	 	Compute bias-corrected second moment estimate:	  
v vt t

t= −1 2β ;

6.	 	Update parameters: θ θ αt t t tv m= − +−1
  .

Adam’s advantages include computational efficiency, 
suitability for large datasets, robustness to noisy gradients, 
and relative insensitivity to hyperparameter tuning. Potential 
limitations include generalization issues in some cases and 
increased memory requirements. It is generally considered  
a good default choice for many deep learning tasks and for 
rapid prototyping.

Estimators validation
Following the estimation of the test data by the estima-

tor, the root mean square error (RMSE) and mean absolute 
error (MAE) criteria were computed using the observed and 
estimated values in the test set, as outlined in equations (7) 
and (8), respectively.

	 RMSE
n

t a
i

n

i i= −( )
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∑1

1
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n
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=
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1
	 (8)

where:
ti – actual value of the parameter,
ai – value assessed by the estimator.

Additionally, accuracy, precision, recall, and f1-score cri-
teria were calculated to validate and compare the efficiency of 
each model (Table 7). The values of these criteria demonstrate 
the strong evaluative performance of this approach.

Table 6. Optimal hyperparameters for each model
Tabela 6. Optymalne hiperparametry dla każdego modelu

Input variables Target Network  
geometry

Activation 
function

Hidden  
layer size Max iteration Solver Learning  

rate initial
Ag, Cu, Pb, Zn Au 4/5/10/1 tanh 2 200 adam 0.025
Au, Cu, Pb, Zn Ag 4/5/10/1 tanh 2 200 adam 0.010
Au, Ag, Pb, Zn Cu 4/5/10/1 logistic 2 200 adam 0.025
Au, Ag, Cu, Zn Pb 4/10/1 tanh 1 200 adam 0.010
Au, Ag, Cu, Pb Zn 4/5/10/1 tanh 2 100 adam 0.025

Table 7. Validation criteria calculated for the multilayer perceptron neural network
Tabela 7. Kryteria walidacji obliczone dla sieci neuronowej – perceptron wielowarstwowy

Input variables Target RMSE MAE Accuracy Precision Recall F1 score
Ag, Cu, Pb, Zn Au 0.47 0.08 95.78 95.74 95.74 95.74
Au, Cu, Pb, Zn Ag 0.35 0.12 88.05 87.77 87.77 87.77
Au, Ag, Pb, Zn Cu 0.68 0.33 73.17 72.80 72.80 72.80
Au, Ag, Cu, Zn Pb 0.61 0.26 79.08 77.60 77.60 77.60
Au, Ag, Cu, Bp Zn 0.61 0.30 72.93 72.83 72.83 72.83
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Results

Anomalies evaluation using multivariate analysis
Geological findings in a particular area lead to the devel-

opment of anomaly maps, which are crucial for identifying 
potential areas. Typically, defining a geochemically anomalous 
area involves considering parameters such as the number of 
anomalous samples and their distribution of each element, 
the trend of the anomaly expansion, the extent of the promis-
ing zone, the exact location of the anomalous samples, the 
intersection of geochemical anomalies with aerial geophysical 
anomalies and tectonic features, the rock facies in the anoma-
lous environment, and, ultimately, the comparability of the 
emission value of the target element with its emission value 
across diverse primary and secondary environments. After 
conducting a statistical analysis of the data, anomaly maps 
for gold, silver, copper, lead, and zinc were generated and 
presented. It is important to note that the maps were developed 
and displayed using ArcGIS software. The collected samples 
were statistically analyzed and subsequently classified and 
color-coded within the software. The classification intervals 
employed in the neural network method (Table 5) were also 
used to create the element distribution maps.

The concentration of gold ranges from values below the 
detection limit of the analyzer to a maximum of 43 ppm. 
This element exhibits no first- or second-degree anomalies, 
while third-degree anomalies are more concentrated in the 
northeast, southeast, and central parts of the area (Figure 5).  
The largest anomaly of this element is located in the northern 
section of the region. The predominant lithology in these 
areas comprises diorite masses that have intruded into the 
sedimentary rocks of the Sefidabeh formation and associated 
metamorphosed rocks.

The silver concentration ranges from a minimum of 
0.12 ppm to a maximum of 0.42 ppm. According to the dis-
tribution map, a significant silver anomaly is present in the 
northern section of the area (Figure 6). The geology of these 
areas consists of a diorite body and the altered Sefidabeh 
formation. This anomaly corresponds with those observed for 
gold, arsenic, and copper.

Copper concentrations range from a minimum of 19 ppm to 
a maximum of 103 ppm. According to the copper distribution 
map, the main anomalies are scattered across the northern, 
northeastern, and southeastern regions of the area (Figure 7). 
In terms of lithology, the outcrop area includes units of the 
Sefidabeh formation and a diorite mass.

Figure 5. Gold distribution map by Rose method
Rysunek 5. Mapa rozkładu złota według metody Rosego
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Figure 6. Silver distribution map by Rose method
Rysunek 6. Mapa rozkładu srebra według metody Rosego

Figure 7. Copper distribution map by Rose method
Rysunek 7. Mapa rozkładu miedzi według metody Rosego
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Figure 8. Lead distribution map by Rose method
Rysunek 8. Mapa rozkładu ołowiu według metody Rosego

Figure 9. Zinc distribution map by Rose method
Rysunek 9. Mapa rozkładu cynku według metody Rosego
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Lead concentrations in the region vary from 9 ppm to 
544 ppm. The most notable anomalies of this element are 
located in the northern and central parts of the area. The pri-
mary lead anomaly in the northern area is associated with the 
lithology of the metamorphosed Sefidabeh formation and the 
diorite mass (Figure 8).

Zinc levels range from 46 ppm to 538 ppm. According to 
the zinc distribution map (Figure 9), anomalies are dispersed 
throughout the northern, northeastern, southeastern, and central 
regions of the area. Zinc anomalies in the northern and central 
areas align with those observed for lead.

 The presence of gold, arsenic, and silver anomalies in the 
study area indicates hydrothermal vein type mineralization. 
Moreover, the occurrence of copper, lead, and zinc anomalies 
suggests the potential for polymetallic mineralization within 
the study area.

Heavy minerals studies
The examinations of heavy minerals is essential for identify-

ing both primary deposits and placer deposits during exploration 
(Dill, 1998). Studies of heavy minerals in Central Europe and 
Canada (Eyles and Kocsis, 1989), as well as alluvial sediments 
in New Zealand (Youngson and Craw, 1996), have led to the 
identification of gold mineralization. Furthermore, the study 
of heavy minerals can aid in determining the characteristics 
of the source area (sedimentary-volcanic rock types) and the 
extent of alteration in the geological formations of the area 
(Westerhof, 1986). Therefore, identifying the origin and source 
can significantly influence the concentration of heavy minerals 
as tracers for assessing mineral potential.

Heavy mineral studies have demonstrated that sampling 
alluvium can assist in locating prospective areas of mineral 
deposits. In the study area, 59 samples were selected and 
analyzed from suitable sites based on the distribution of rock 
types and extensive alluvial networks. Results from these 
studies indicate 10 records of mineral deposits (associated 
with mineralization). The identified minerals include native 
gold, native copper, galena, cinnabar, malachite, cerussite, py-
romorphite, mimetite, vanadinite, and wulfenite. Additionally, 
chromite appeared as rounded grains in most heavy mineral 
samples, which was considered unusual, as there are no ul-
tramafic outcrops or chromite mines in the vicinity. Based on 
this observation, analyses of heavy minerals were conducted 
on 2 sand samples from the region, both of which contained 
chrome. This study found that chromite minerals from distant 
areas, such as the 1:100,000 Bandan sheet containing ophiolitic 
formations and chromite mines, were transported to the region 
by wind-blown sand. This phenomenon is likely explained 
by the 120-day winds of Sistan. Various other minerals such 
as magnetite, hematite, sapphire, andalusite, pyrite, oxidized 

pyrite, limonite, and others were also frequently recorded. Due 
to the semi-quantitative characteristics of the results, conven-
tional statistical inferences cannot be directly applied to heavy 
mineral studies. Given the importance of ore deposits in the 
study area, attempts were made to represent minerals exhibit-
ing similar behaviors or distinctive traits (such as the presence 
of a specific element) on a single map. The Janja region is 
known for significant minerals belonging to the gold, copper, 
and lead mineral families. The heavy mineral distribution map 
(Figure 10) illustrates the anomalous regions recognized for 
various minerals based on the heavy mineral analyses.

The results of heavy mineral investigations indicate that the 
study area is rich in mineral resources. Celestine and barite, as 
non-magnetic minerals, hold significant value. Additionally, 
other non-magnetic minerals such as apatite, rutile, zircon, 
leucoxene, sphene, and pyrite are present in minor and scattered 
quantities, along with calcium carbonate measured in grams 
per ton. Minerals found in the medium magnetic section, also 
measured in grams per ton, include hematite, ilmenite, py-
roxene, amphibole, and occasionally pyrite. The only mineral 
present in the hypermagnetic fraction is magnetite; however, 
its concentrations render it economically unviable.

Ore-forming minerals, with the exception of a few such 
as magnetite, ilmenite, chromite, and hematite, fall into the 
category of non-magnetic minerals. Gold occurs as part of the 
crystal structure in non-magnetic minerals and can be detected 
through laboratory methods (Carman, 2005). In general, heavy 
minerals studies regarding ore significance in the area can be 
classified into three categories (Figure 11): 1) Main minerals 
associated with gold mineralization, including native gold and 
cinnabar. 2) Indicator minerals of copper mineralization, such 
as native copper and malachite. 3) Indicator minerals associ-
ated with polymetallic mineralization, such as lead, cerussite, 
mimetite, pyromorphite, vanadinite, and wulfenite.

Lithogeochemical explorations
Geochemical exploration is a technique used to locate 

mineral deposits, which contributes to reducing exploration 
costs and identifying promising regions for further investiga-
tion (Prendergast, 2007). Lithogeochemical studies, as an 
exploration method, involve examining the distribution and 
concentration of various elements in rocks, detecting anomalies, 
assessing geochemical halos, and developing zoning models. 
These approaches aid in revealing concealed mineral deposits 
(Venkataraman et al., 2000). 

Bedrock samples are commonly evaluated to detect pri-
mary dispersion halos associated with hidden mineral de-
posits (Eilu et al., 2001). Lithogeochemical sampling was 
conducted in both the northern and southern drainage basins  
of the study area.
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Figure 10. a) Scatter map of gold indicator minerals (gold + cinnabar); b) Scatter map of copper indicator minerals (native copper + 
malachite); c) Scatter map of lead and zinc indicator minerals (galena, cerussite, mimetite and pyromorphite) in the study area
Rysunek 10. a) Mapa występowania minerałów wskaźnikowych złota (złoto + cynober); b) mapa występowania minerałów wskaźniko-
wych miedzi (miedź rodzima + malachit); c) mapa występowania minerałów wskaźnikowych ołowiu i cynku (galena, cerusyt, mimetytu 
i piromorfit) na badanym obszarze

To verify the position of anomalous samples identified 
through geochemical and heavy mineral investigations, ham-
mer prospecting was conducted in the study area. These in-
vestigations were conducted in the northern and southern 
regions, where the anomalies were concentrated, leading to 
the identification of polymetallic veins containing gold, sil-
ver, copper, lead, and zinc mineralization in both sections. In 

the northern region, 13 mineralized samples were collected, 
and the concentration of polymetallic elements was assessed. 
Consequently, elemental maps illustrating the distribution 
of gold, silver, copper, and lead in the northern region are 
presented (Figure 12). During hammer investigations in the 
southern part of the specified area, various veins of polymetallic 
mineralization were identified.
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Figure 11. a) Presence of gold; b) Gold along with cinnabar; c) Mimetite, pyromorphite and vanadinite; d) Galena in heavy mineral 
samples (The gold grains size is about 25 to 100 μ)
Rysunek 11. a) Obecność złota; b) złoto wraz z cynobrem; c) mimetyt, piromorfit i wanadynit; d) Galena w próbkach minerałów  
ciężkich (wielkość ziaren złota wynosi około 25–100 μ)

Figure 12. Grade maps:: a) gold; b) silver; c) copper; d) lead for mineralized samples obtained from the northern region
Rysunek 12. Mapy koncentracji: a) złota; b) srebra; c) miedzi; d) ołowiu dla zmineralizowanych próbek uzyskanych z regionu 
północnego
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Field operations and anomaly control
Following the analysis of geochemical samples using the 

Rose method, a set of encouraging results was obtained. These 
anomalous areas may be associated with mineralization events 
and geochemical halos observed at the surface, or they may be 
related to mineral contamination or spurious anomalies within 
the area. It is important to note that the anomalous watershed 
regions were re-examined during field operations. Samples 
were collected from mineralized and altered zones and for 
further tests, including chemical analysis and preparation of 
thin or polished sections. By analyzing the results of these 
samples, the presence of economically valuable mineralization 
in the anomalous area can be confirmed. Based on geological 
evidence and data obtained from the investigated area, three 
zones encompassing approximately 71 km2 have been identified 
in the study area as potentially rich in polymetallic deposits of 
gold, silver, copper, and lead (Figure 13).

Anomalies evaluation using multilayer perceptron 
network

As previously noted, the multilayer perceptron neural net-
work approach was also employed to identify prospective 
mineralized zones. The outcomes of this method were pre-
sented as distribution maps for gold, silver, copper, lead, and 
zinc (Figure 14). 

Conclusions

Analysis and assessment the geochemical studies and 
anomaly monitoring indicate that the study area has signifi-
cant potential for polymetallic mineralization of gold, silver, 
copper, lead, and zinc. Evidence supporting this mineralization 
includes the following:
•	 	High concentrations of arsenic, lead, and zinc in the wa-

terway sediment samples from the area;
•	 	High correlation (often exceeding 90%) between arsenic, 

cadmium, lead, zinc, and copper in river sediment samples;
•	 	Relationship between lead, zinc, copper, and arsenic anoma-

lies in the area;
•	 	The presence of lead, zinc, and copper as an ore-forming 

group shows a variability of 50.3% in factor analysis;
Results from preliminary heavy mineral analysis and anom-

aly control in indicate the presence of polymetallic deposits 
of gold, silver, copper, lead, and zinc in the region. Indicators 
of this mineralization include:
•	 	High concentrations of arsenic, lead, and zinc found in 

waterway sediments;
•	 	Compatibility of lead, zinc, copper, and arsenic anomalies 

in the area;
•	 	Identification of ore minerals such as native gold, native 

copper, galena, cinnabar, malachite, cerussite, pyromorphite, 

Figure 13. Proposed zones for the continuation of exploration operations
Rysunek 13. Proponowane strefy dla kontynuacji działań poszukiwawczych
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mimetite, vanadinite, and wulfenite in heavy mineral  
samples.
Heavy mineral anomalies were identified, and field vali-

dation of these anomalies was conducted through hammer 
prospecting. In this study, over 40 highly concentrated mining 
sites and polymetallic veins containing gold, silver, copper, 
lead, and zinc were identified in anomalous areas. These poly-

metallic veins commonly occur as siliceous veins ranging in 
thickness from 1 to 10 meters and contain minerals such as 
galena, sphalerite, chalcopyrite, and malachite. The maximum 
concentration of gold, copper, and silver detected in the min-
eralized samples from these anomalous areas is 15.9, 10775, 
and 270.3 ppm, respectively. The maximum concentrations 
of lead and zinc both exceeded 3%. It is believed that mineral  

Figure 14. Maps generated and threshold values determined using Multilayer Perceptron for: a) gold; b) silver; c) cupper; d) lead; e) zinc
Rysunek 14. Wygenerowane mapy i wartości progowe określone przy użyciu perceptronu wielowarstwowego dla: a) złota; b) srebra;  
c) miedzi; d) ołowiu; e) cynku
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deposits in the anomalous areas were formed by ascending 
fluids and hydrothermal processes along 100 to 110 degree 
faults. Based on geological evidence, as well as geochemi-
cal and heavy mineral analyses, three zones covering ap-
proximately 71 km² within the study area have been identified 
as potentially rich in polymetallic deposits of gold, silver,  
copper, and lead.

Artificial neural networks are parallel systems used to 
identify complex patterns in data. Owing to their parallel 
structure, neural networks are capable of performing complex 
computations without relying on mathematical models or as-
suming the linearity of many variables. One of the primary 
factors influencing the performance of a neural network is the 
number of neurons, which significantly impacts the model's 
output. Therefore, input variables must be selected in a manner 
that maximizes the number of factors influencing the output. 
It is important to note that the decision on the number of neu-
rons in the hidden layer depends on experience and testing the 
network with different numbers of neurons. In addition to the 
number of neurons, other factors such as the activation func-
tion, network structure, initial learning rate, and other factors 
influence the performance of the neural network model. These 
factors should also be considered when designing the network 
to achieve the best network configuration.

This research examined the effectiveness of the multilayer 
perceptron neural network's intelligent estimator in predicting 
the grade of gold, silver, copper, lead, and zinc, alongside 
multivariate statistical techniques. In this approach, the grade 
of one element served as target variable, while the grades of 
the remaining four elements were used as input variables. 
The results confirmed the suitable performance of the model 
in estimating element grades. The element grade distribution 
maps produced by both the multivariate statistical analysis 
methods and the multilayer perceptron neural network indi-
cate that the neural network output maps have identified the 
promising areas with greater accuracy. This can led to reduced 
exploration costs, including those related to sampling, drilling, 
and geophysical operations.
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