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ABSTRACT: Geochemical analysis is an effective technique for detecting mineral deposits by examining element concentrations.
Various statistical techniques have been developed to differentiate abnormal values from background values. A more accurate analysis
can be obtained by employing multivariate statistical methods. The use of these methods enables the simultaneous analysis of changes
in multiple variables. This research utilized correlation coefficients, cluster analysis, and factor analysis to demonstrate the genetic
connections among various elements. The factor analysis method was additionally applied to generate multivariable maps and compre-
hensive multivariable results. Moreover, the stepwise factor analysis (SFA) method, an enhanced version of traditional factor analysis,
was utilized to produce geochemical distribution maps. This technique entails initially recognizing and removing non-representative
elements, followed by identifying the most important and impactful representative factors. This study demonstrates the efficacy of the
SFA method when applied to geochemical data. This approach removes superfluous elements and increases the variance attributed
to the predictive mineralization factor, thereby improving the geochemical halos. Additionally, this research evaluated multivariate
analysis approaches alongside machine learning techniques. To achieve this, a multilayer perceptron neural network (MLP) was used
to evaluate the levels of gold, silver, copper, lead, and zinc in the study area. The output variable represented the grade of a particular
element individually, whereas the input variables encompassed the grades of the remaining four elements. To optimize the model, dif-
ferent quantities of hidden layers and a range of activation functions were applied. Ultimately, an ideal model was developed for each
element. The model achieved accuracies of 95%, 88%, 73%, 80%, and 72% for the gold, silver, copper, lead, and zinc, respectively.
The results show the significant computational efficiency of this method in assessing element grades. Finally, the element distribution
maps generated by both methods indicate that the MLP approach identified the anomalous areas with higher accuracy.
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STRESZCZENIE: Analiza geochemiczna jest skuteczng technikg wykrywania zt6z mineralnych poprzez badanie stgzen pierwiastkow.
Opracowano rézne techniki statystyczne w celu odroéznienia nieprawidtowych wartoéci od wartosci tta. Doktadniejszg analize mozna
uzyskac¢ stosujac wielowymiarowe metody statystyczne. Zastosowanie tych metod umozliwia jednoczesng analiz¢ zmian wielu zmien-
nych. W niniejszym badaniu wykorzystano wspotczynniki korelacji, analizg¢ skupien i analiz¢ czynnikowa w celu wykazania powigzan
genetycznych mig¢dzy roznymi pierwiastkami. Metoda analizy czynnikowej zostata dodatkowo zastosowana do wygenerowania map
wielu zmiennych i kompleksowych wynikow wielu zmiennych. Co wigcej, zastosowano metod¢ stopniowej analizy czynnikowej
(SFA), ulepszong wersje¢ tradycyjnej analizy czynnikowej, w celu stworzenia map rozktadu geochemicznego. Technika ta polega na
wstepnym rozpoznaniu i usuni¢ciu pierwiastkow niereprezentatywnych, a nastepnie zidentyfikowaniu najwazniejszych i najbardziej
wplywowych czynnikéw reprezentatywnych. Przeprowadzone badania wykazaty skuteczno$¢ metody SFA w analizie danych geoche-
micznych. Podejscie to pozwala na eliminacj¢ zbednych elementow oraz zwigkszenie wariancji przypisanej predykcyjnemu czynnikowi
mineralizacji, co prowadzi do lepszego zdefiniowania aureoli geochemicznych. Dodatkowo, w badaniu tym oceniono wielowymiaro-
we podejscia analityczne wraz z technikami uczenia maszynowego. Ponadto, w badaniu oceniono metody analizy wieclowymiarowej
w potaczeniu z technikami uczenia maszynowego. W tym celu wykorzystano sie¢ neuronowga — perceptron wielowarstwowy (MLP)
do oceny zawartosci ztota, srebra, miedzi, otowiu i cynku w badanym obszarze. Zmienng wyjsciowa byla zawarto$¢ konkretnego
pierwiastka, natomiast zmiennymi wejsciowymi — zawarto$ci pozostalych czterech pierwiastkow. W celu optymalizacji modelu za-
stosowano rozne liczby warstw ukrytych oraz szereg funkcji aktywacji. Ostatecznie opracowano model optymalny dla kazdego pier-
wiastka. Modele osiagnely doktadnos$ci wynoszace odpowiednio 95%, 88%, 73%, 80% i 72% dla ztota, srebra, miedzi, otowiu i cynku.
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Wyniki te wskazuja na wysoka efektywnos$¢ obliczeniowg tej metody w ocenie zawartosci pierwiastkow. Ponadto mapy rozmieszczenia
pierwiastkow wygenerowane obiema metodami wykazaty, ze podejscie oparte na MLP identyfikowato obszary anomalii z wigksza

doktadnoscis.

Stowa kluczowe: analiza skupien, wspotczynniki korelacji, wielowymiarowe metody statystyczne, krokowa analiza czynnikowa,

perceptron wielowarstwowy.

Introduction

The geochemical study of waterways sediments is a method
applied during the early stages of identifying and locating
promising regions. One of the practical challenges in geo-
chemical research is assessing how representative a sample
is for predicting the type of mineralization. To identify the
best indicators and pathfinder elements for exploration, it is
crucial to pinpoint and assess promising areas for a particular
mineral. A proposed solution to this issue is the use of mul-
tivariate statistical analysis (Halfpenny and Mazzucchelli,
1999; Chandrajith et al., 2001; Grunsky et al., 2009). Factor
analysis is a multivariate analytical method frequently used
in the geochemical investigation of waterway sediments to
identify prospective regions for mineralization (Borovec, 1996;
Reimann et al., 2002; Kumru and Bakag, 2003; Van Helvoort
et al., 2005; Sun et al., 2009). This approach can address spe-
cific limitations of factor analysis in geochemical exploration,
improve geochemical halos, and produce a more effective
geochemical map (Yousefi et al., 2012).

Statistical techniques can be employed to examine the
relationship between data in geochemical studies. Before
performing multivariate statistical analysis, univariate analy-
ses are required. Conducting these analyses allows for the
examination of the data and the identification of certain char-
acteristics, such as abnormal samples in the study area. The
aim of assessing heavy mineral sample results in multivariate
statistical studies is to determine the type of mineralization
present in the region (Govett, 2013). Considering the extent
of the region, the most appropriate sampling technique is the
collection of waterways sediments. However, heavy minerals
investigations may also prove to be quite beneficial. In this
method—unlike geochemical sampling, which seeks to evaluate
the overall amount of an element within the rock and analyze
its variability and distribution—the examination of the miner-
alogical phase emphasizes the presence of elements as distinct
minerals. Hence, analyzing heavy mineral samples is utilized
to pinpoint anomalous regions, identify mineral varieties and
possible types of mineralization, understand mineralogical
generative relationships, and assess potential paragenesis. The
only limitation of this method is that the outcomes are partially
quantitative and partially qualitative. Typically, this method
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can be highly advantageous when applied alongside the geo-
chemical technique. Taking this into account, and evaluating
the advantages and disadvantages of this method with three
goals in mind, heavy mineral sampling was conducted in the
area. This involved confirming extractive anomalies through
the hydrogeochemical approach, determining the dispersion
phase of various elements, and addressing any information gaps
arising from sampling method constraints or the generation
of waterway geochemical findings. Therefore, integrating the
findings from these two approaches can offer a more precise
representation of the exploration environment.

Evaluating mineral grade is essential for assessing the de-
posit reserve; therefore, different stages of a mining project,
such as feasibility, design, and planning, significantly depend
on the accuracy of grade estimation. Geostatistical methods
are frequently used to predict grade fluctuations and evaluate
reserves in deposits; nevertheless, these techniques encounter
several issues, such as uncertainty regarding the validity of
assumptions, the determination of variographic parameters,
being time-consuming, and the inability to provide accurate
estimates under conditions of weak spatial structure of regional
variability. As a result, this has led to the investigation of ar-
tificial intelligence-driven estimators for grade assessment in
recent times. Research in this field involves the use of multilayer
perceptron neural networks, support vector regression, and
fuzzy neural systems for estimating copper grades (Valizadeh
and Sharghi, 2014); optimization methods for neural networks
focused on copper grade estimation (Tahmasbi and Hezarkhani,
2011); the application of perceptron-genetic neural networks
for analyzing limestone composition (Chatterjee et al., 2008);
artificial neural networks for assessing gold grades (Mostafaei
etal., 2023); evaluation of grade in a gold placer deposit horizon
using a simple ray neural network (Samanta and Bandopadhyay,
2009); predicting geochemical behavior of copper through
artificial neural networks (Shirazy et al., 2020); estimating
lead and zinc grades while assessing deposit reserves with
artificial neural networks (Arinze et al., 2019); analysis of
lignite impurities using a fuzzy neural system (Tutmez, 2009);
determining platinum grade in a placer deposit horizon with
support vector regression (Chatterjee and Bandopadhyay,
2011); geochemical studies along with tonnage and grade via
probabilistic neural networks (Singer, 2006); classification of



organic content in sediments (Weller et al., 2005); digitization
and categorization of volcanic rock geochemical data using
artificial neural networks (Lacassie et al., 2004, 2006), and
employing neural networks for locating deposits (Singer and
Kouda, 1996).

This study aims to explore the computational effective-
ness of the intelligent multilayer perceptron neural network
approach for modeling element grades in the Janja polymetal-
lic gold deposit and to compare its results with multivariate
statistical methods.

Study area

The Janja region is situated in Saberi town in the province
of Sistan and Baluchistan (Figure 1). Saberi town is located
at a geographic coordinates of 61° 29" longitude and 31° 1'
latitude, positioned in the southeast of Iran and to the northwest
of Zahedan city.

The Sistan fault zone in eastern Iran is located in the north-
south-trending Cretaceous-Tertiary orogenic belt between the
Central Iranian and Afghan continental blocks (Agard et al.,
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Figure 1. The location of the study area
Rysunek 1. Lokalizacja obszaru badan

2011). Rock outcrops in this area include sedimentary rocks
such as sandstone and shale of the Shemshak Formation,
Jurassic limestones, and marly shales, in addition to Quaternary
sediments. Igneous outcrops in the area also include dacite and
layered tuffs (Aghanabati, 2004) (Figure 2).
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Figure 2. Geological map of the study area
Rysunek 2. Mapa geologiczna obszaru badan
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Sefidabeh Formation unit

The oldest geological unit found in this region is the
Sefidabeh Formation, dating from the Late Cretaceous to
Early Paleocene epochs. In the study area, this unit appears
as metamorphosed equivalents in the study region (hornfels
and skarn). A Miocene-aged mass of diorite to quartz diorite
has intruded into this sedimentary layer, causing contact meta-
morphism and resulting in the formation of hornfels and skarn
from the Sefidabeh layer. The dominant alteration in this unit
is propylitic, accompanied by the development of epidote,
chlorite, and calcite. In some outcrops, localized sericite al-
teration is also present.

Hornfels unit

Due to the intrusion of the diorite-quartz mass in the area,
the Sefidabeh sedimentary formation has undergone constant
metamorphism, resulting in the formation of the hornfels
unit. In surface observations, this unit is frequently seen on
the diorite-quartz mass. The color of this unit varies from pea
yellow to light green, depending on the quantity of epidote
and chlorite present. Microscopic analyses indicate that this
unit mainly consists of epidote, chlorite, quartz, and calcite.

Skarn Unit

This unit formed as a result of the intrusion of the diorite-
quartz mass into the Sefidabeh sedimentary formation. It typi-
cally develops with limited extent at the boundary of the diorite
mass or in more reactive layers of the Sefidabeh formation,
such as sections of impure limestone. The thickness of this
unit ranges from a few tens of centimeters to several meters.
In surface exposures, the formation appears dark green due
to the abundant presence of epidote and chlorite. The primary
minerals composing the skarn unit comprise epidote, chlorite,
calcite, and garnet.

Diabase dyke unit

This unit has limited extent in the study area. Only two
minor exposures of these dykes have been observed in the
Hornfels unit located in the southern part of the area. In sur-
face outcrops, the unit appears dark gray to black, and many
of its exposures are weathered and fractured. The unit exhibits
a northeast-southwest orientation, and its thickness ranges
from 1 to 3 meters. Microscopic analyses show that the unit
comprises faceted pyroxene crystals and plagioclase within
a more finely crystalline groundmass of the same composition.
The dominant alteration in these dykes is weak chloritization.

Quaternary sedimentary units

These are the most widespread units in the area and consist
of two components. One component comprises coarse sedi-
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ments, which are most prevalent, while the other consists of
alluvial sediments found in the channels of rivers and streams
in the area.

Materials and methods

Geochemical sampling

The design of the sampling network is a crucial phase in
geochemical studies. Its effectiveness depends on the type of
exploratory deposit and the scale of the study. To achieve this
goal, it is essential to collect and integrate all relevant informa-
tion, including bedrock classification (igneous, sedimentary,
and metamorphic), intersections between igneous masses and
sedimentary layers, varieties of metamorphic facies, and con-
cealed intrusive bodies. In developing the sampling network,
information from the 1:100,000 Khunik geological map, along
with topographic maps, tectonic structures, and aerial and satel-
lite images, was collected and integrated. As a result, 153 river
sediment samples were collected from a 144 km? area, yielding
an estimated sampling density of approximately 1.1 samples
per square kilometer (Figure 3). The samples were analyzed
using the ICP-AES method for 44 elements. It is important to
note that the Fire Assay preparation technique was employed
for gold analysis. Furthermore, the heavy mineral sampling
network was designed to collect one sample for every 2.4 km?.
As aresult, 59 heavy mineral samples were planned and col-
lected, taking into account the necessary quantity of samples
required to generate heavy mineral samples in both outcrop
and plain areas. During field operations, a total of 7 liters of
unsieved samples were collected. Collecting heavy mineral
samples from locations where coarse particles accompany finer
ones yields improved results. Sampling involved excavating
holes with diameters of 30—40 c¢cm and depths of 30-50 cm,
collecting more than 5 kg of soil, which was sieved through
a 20 mesh to obtain the final sample. The collected samples
were prepared following volume measurement, mud washing,
and drying, using bromoform liquid in the heavy mineral lab.
Subsequently, with the use of a magnet, the recovered miner-
als were classified into three groups: magnetic (AA), weakly
magnetic (AV), and non-magnetic minerals. The results were
then reported according to the percentage of minerals identified
using a binocular microscope.

Factor analysis

The observable random vector x = (xy, x5, ... , X)) T which has
p components, has a mean represented by = (uy, t, ... up)T,
and a covariance matrix denoted by }’ = (¢;)p.p. The fac-
tor model suggests that x is linearly dependent on several
m-dimensional vectors of unobserved variables =1, 5, ... , /s
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Figure 3. Geological sampling network map of the study area (Ebdali and Hezarkhani, 2024)

Rysunek 3. Mapa geologicznej sieci pobierania probek na badanym obszarze (Ebdali i Hezarkhani, 2024)

known as common factors, and a p-dimensional vector of un-
observed variables ¢ = g, &, ..., §,, known as specific factors.
The matrix representation of FA is given by x — u = Af + ¢,
where 4 = (0;)p, (i = 1,2, ..., p;j = 1,2, ..., m), is known as
factor loading.

In FA, the goal is to account for the covariance or correla-
tion between variables. The covariance matrix is represented as
Y. = AA" + DA, the variance matrix is var(x,) = X" a;c;, and

m 2

the common variance is #° = L a;.

Multilayer Perceptron Neural Network

Artificial neural networks are inspired by the complex
structures of the human brain, in which millions of neu-
rons communicate to solve problems and store informa-
tion. The task of a neural network is to learn. This process
begins with training, or gaining experience, which is car-
ried out using a series of desired input and output data.
In this way, a set of correct inputs and outputs is presented
to the network, and the neural network uses these inputs to
construct a complex mathematical model that generates the
correct response when provided with new inputs (Krose and
Smagt, 1996).

The multilayer perceptron neural network is a multi-layered
feedforward neural network. In this network, spatial rela-
tionships between input and output variables are detected by
a group of processing units called neurons, organized into
input, hidden, and output layers. This network detects the
spatial variability of mineral grade using mapping functions ¢,
created by a set of association weights between the inputs and
the output (Mahmoudabadi et al., 2009). The output o (element
grade) can be considered a function of the association weights
w:o = @(x) (Dutta et al., 2010). Optimization algorithms can
be used to determine the optimal structure of a multilayer
perceptron neural network in terms of the number of hidden
layers and the number of neurons in those layers.

Discussion

Data processing

Exploration objectives can be achieved through the analysis
of geochemical data. In geochemical exploration, numerous
samples and multiple factors must be considered. As a result,
the application of statistics and probability in data analysis has
become essential. Data processing is considered acceptable
when the laboratory error (assessment of repeated samples)
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is below 10%. By incorporating additional methods such
as heavy mineral studies, anomaly control, and comparison
of geochemical anomalies with data processing results, the
accuracy and reliability of the analysis can be improved.
The data management procedure includes organizing raw
laboratory data, substituting censored data, conducting statis-
tical analyses, detecting outliers, and presenting results using
graphs and tables.

Analysis error determination

To effectively use the measurement results, it is essential
to understand the degree of confidence in the measurements.
Quality control tests are performed to identify any errors in
the preparation and analysis steps. The reliability of measure-
ment data generally depends on the magnitude of both random
and systematic errors. It is important to note that the sampling
error is primarily systematic, while random error arises from
natural variability and is present to some extent in all types of
measurements (Parsons and Clegg, 2009). The relative error
of analyses is calculated using Equation (1):

e=2/n[2|xi—yi|/(xi+yl.)]><100 (1)

where:

e — relative error value,

n — number of repeated samples,

X;, y; — values measured in the main sample and its corre-
sponding repeated sample.

The sample analysis error values were calculated for dif-
ferent elements (Table 1). The results show that cadmium and
sulfur have errors exceeding 20%, while all other elements
have errors within acceptable limits.

Table 1. Mean calculated error between two pairs of correspond-
ing repeated samples using the ICP-AES technique to evaluate lab
precision

Tabela 1. Sredni obliczony btad miedzy dwiema parami
odpowiednich powtarzajacych si¢ probek przy uzyciu techniki
ICP-AES do oceny doktadno$ci badan laboratoryjnych

Elements | Average Lab Error| Elements |Average Lab Error
Ag 13 Mo 13
Al 3 Na
As 11 Ni
Ba 3 P
Be 3 Pb 15
Ca 4 S 28
Cd 21 Sb 6
Ce 3 Sc 3
Co 5 Sr 2
Cr 11 Th 3
Cu 7 Ti 1
Fe 3 U 6

K 3 v 3
La 3 Y 4
Li 4 Yb 4
Mg 5 Zn 6
Mn 4 Zr 4

Censored data estimation

Censored data refers to values that lie beyond the sensitivity
thresholds of the device, either exceeding the upper threshold
or falling below the lower threshold. In the context of relative
measurements, such as differentiating between background and
anomaly, the presence of censored data can lead to inaccurate
evaluations. To address this issue, estimated values should

Table 2. Number of censored data and their replacement values in the dataset

Tabela 2. Liczba danych cenzurowanych i ich warto$ci zastgpcze w zbiorze danych

Element Unit Detection Limit Total Sample No. of Censored | Percentage [%] Replace Value
Au ppb 5 153 135 88.2 3.75
Ag ppm 0.1 153 0 0 0.075
Al ppm 100 153 0 0 75
As ppm 0.5 153 1 0.6 0.375
Ca ppm 100 153 0 0 75
Cd ppm 0.1 153 0 0 0.075
Ce ppm 1 153 0 0 0.75
Co ppm 1 153 0 0 0.75
Cr ppm 1 153 0 0 0.75
Cu ppm 1 153 0 0 0.75
Fe ppm 100 153 0 0 75
La ppm 1 153 0 0 0.75
Li ppm 1 153 0 0 0.75
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Element Unit Detection Limit Total Sample No. of Censored | Percentage [%] | Replace Value
Mg ppm 100 153 20 13 133
Mn ppm 5 153 0 0 3.75
Mo ppm 0.5 153 0 0 0.375
Ni ppm 1 153 0 0 0.75

P ppm 10 153 0 0 7.5
Pb ppm 153 153 0 0 0.75
S ppm 50 153 0 0 37.5
Sb ppm 0.5 153 0 0 0.375
Sc ppm 0.5 153 0 0 0.375
Th ppm 0.5 153 0 0 0.375
v ppm 1 153 0 0 0.75
Yb ppm 0.2 153 0 0 0.15
Zn ppm 1 153 0 0 0.75

be used to substitute censored data. Various techniques can
be employed to estimate censored data values, one of which
is the simple substitution method (Sanford et al., 1993). This
approach entails replacing values exceeding the sensitivity
threshold with 4/3 of that threshold, and those below it with
3/4 of the threshold. If the proportion of censored data is less
than 10% of the total dataset, this method is usually considered
acceptable. The outcomes of substitution for the censored are
presented in Table 2. The table indicates that only 2 elements
contain missing data. For gold, 88.2% of the data is censored
and cannot be substituted, with only the samples containing
the censored data being excluded from this element, allowing
the remaining available data to be used. In addition, in the
case of magnesium, 20 samples were censored, representing
13% of the total.

Outlier values elimination

Outlier are values that lie significantly outside the data
range and are considered as either very low or very high values.
These values are important, as they might indicate anomalies
associated with mineralized areas. However, they may also
arise from substantial sampling or laboratory errors.

Most statistical distributions in exploratory projects are
non-normal and typically exhibit right-skewed distributions
(Reimann and Filzmoser, 2000). Distributions of this kind
emphasize the importance of the values located on the right
side of the distribution. These exceptionally high values may
represent anomalies (on a regional scale) or rich ore deposits
(on a local scale). The box plot diagram was utilized in this
study to identify outlier values. Boxplots serve as a method
to illustrate the data distribution within statistical populations,
highlighting quartiles and the interquartile range. These graphs
show the minimum, 25th percentile, median, 75th percentile,

and maximum values, identifying outlier or extreme samples
using the interquartile range, where outlier samples satisfy
equations (2) and (3).
Outlier = 1. 5 (75th — 25th) 2)
Extreme = 3 (75th — 25th) 3)

Samples that exceed these thresholds are classified as outli-
ers or extreme values. The elongation of the tails in boxplots
may suggest the presence of samples exhibiting unusual values.
From the boxplots, it is possible to identify the detection limit
level, interquartile range, median position, spread of outliers
and extreme values, distinctions between normal and anomalous
distributions, as well as potential for unusual values.

It is important to emphasize that during Pearson's correlation
analysis and cluster analysis, outliers were adjusted solely by
replacing them with the highest outlier value to compute the
standard function F. Furthermore, in differentiating anomalies
from background values, mean values and standard deviations
were calculated while retaining outlier values, and no substi-
tutions were made in the computations. Once the censored
values were replaced, a boxplot was generated for different
elements. The boxplot illustration presents gold and silver as
examples (Figure 4).

Data normalization

It is common for geochemical data to exhibit a log-normal
distribution, while a normal distribution is rare. Therefore, prior
to performing calculations, it may be necessary to convert the
abnormal data into normally distributed data through the use
of transformations. To achieve this, logarithmic transforma-
tion, three-parameter transformation, generalized exponential
transformation, or other available techniques can be employed
(Pawlowsky-Glahn et al., 2015). Nonetheless, logarithmic trans-
formation is often used due to its simplicity of implementation.
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Figure 4. Boxplot of gold (a) and silver (b)
Rysunek 4. Wykres pudetkowy dla zlota (a) i srebra (b)

When the data follow a normal distribution, the average of
the sample group provides a more accurate estimate than the
average of the entire population. Despite the advantages of
converting the data distribution to normal, such transformation
should not always be applied. The decision to use a transfor-
mation depends on a specific context. Transformations may
be appropriate if a desired outcome can be achieved using the
transformed values, particularly when there are no limitations
in accessing the or when reverse transformation can be per-
formed easily. If the estimation derived from the initial data
is sufficiently precise, it is preferable to avoid transformation
when possible. The F function is a statistical measure used to
determine whether a normal distribution exists among differ-
ent elements. This function is calculated using equation (4).

F=2|sk|+]|3-K]| “4)

where:
Sk — Skewness value,
K — amount of stretching in the distribution of data.

Hence, a distribution (raw or logarithmic) with an F value
closer to zero is considered more typical. Equations (5) and
(6) are used to calculate the mean and standard deviation by
applying inverse transformations in a normal log transforma-
tion to find the values of X and S.

S=Xxy" -1 (5)
)? _ ea+(ﬁ2/2) (6)

where:
a — mean of logarithmic data,
f — standard deviation of the logarithmic data.
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The geochemical data were examined after replacing outlier
values and applying logarithmic transformation. By examin-
ing the shape of the distribution function, the maximum value
of each element, and the skewness of its distribution, it was
possible to assess whether a given element has a favorable
detection potential. In this region, zinc, lead, arsenic, copper,
and cadmium exhibit significant skewness and peak values
relative to global background levels, indicating a relative
potential for mineralization.

Outlier values may suggest the occurrence of a special
geological phenomenon. Unusual concentrations of elements
such as zinc, lead, arsenic, silver, cadmium, and antimony
may indicate metal mineralization or localized concentration
of these elements. Variations in lithological units, such as the
presence of carbonate rocks in the region, may result in the
occurrence of elements such as potassium, cerium, calcium,
and vanadium.

Establishing the normality of each element can be done by
examining its minimum, maximum, average, median, standard
deviation, and skewness. Based on this analysis, silver and
copper exhibit nearly normal conditions, while lead and zinc
show standard logarithmic conditions.

Multivariate statistical calculations

Multivariate analysis refers to the concurrent assessment of
multiple variables. Based on this definition, many multivari-
ate methods are fundamentally built upon and have evolved
from univariate and bivariate analyses (Denis, 2021; Maiti,
2022; Mardia et al., 2024). Each distinct group of elements
exhibits a degree of sensitivity that is relatively similar under
different environmental conditions. Identifying the shared
genetic connections among different elements can enhance



our understanding of changes in geochemical environments.
These connections can serve as a straightforward reference for
interpreting deposit types, while conversely, the accumulation
of some elements might suggest the presence of unimportant
and misleading anomalies. In general, grasping the genetic
relationships among elements is crucial for the accurate analysis
of geochemical information.

Overall, multivariate statistical analyses offer two main
advantages. The composite halos obtained through multivariate
statistical methods show a greater correlation with the deposit's
structural features, geology, and origin, resulting in a more
clearly defined relationship between the elements. Moreover,
by employing composite halos, random errors can be reduced,
and the quantity of data and maps minimized, leading to more
effective outcomes. In this research, genetic connections were
illustrated through correlation coefficients among different
components, along with cluster analysis and factor analysis.
The factor analysis technique is also employed for generat-
ing multivariable maps and achieving overall multivariable
outcomes.

Correlation coefficients calculation

Opting for two-variable studies as the main approach fa-
cilitates the detection and examination of genetic and second-
ary relationships among variables. The examination of two
variables includes analyzing the scatter plot and calculating
the correlation coefficient between them (Ghannadpour and
Hezarkhani, 2015; Ghannadpour et al., 2015). The correla-
tion coefficient and its variations are frequently employed in
exploratory stages, particularly in geochemical investigations.
When determining correlation coefficients, it is essential to
assume that the data follow a normal distribution, similar to
other statistical measures. If the data distribution is not normal,
Spearman's non-parametric correlation coefficient is used to
calculate the correlation coefficients, irrespective of the data
distribution function. The correlation coefficient matrix was
computed by examining the chemical composition of 153 river
sediment samples for various elements. Based on this infor-
mation, copper is closely associated with lead, zinc, arsenic,
and cadmium. Consequently, rather than anomalies in these
elements, copper mineralization can be observed alongside
other essential elements such as lead and zinc, as well as
hydrothermal alteration. The correlation between copper and
lead is 0.89, whereas with zinc it stands at 0.95.

A significant correlation exists between lead and zinc, along
with cadmium and arsenic, which may indicate the possibility
of vein mineralization in the area. The correlation of cadmium
and arsenic with lead is 0.90 and 0.96, respectively, whereas
with zinc it is 0.82 and 0.95. Further correlations include the
relationships between iron and chromium, cobalt, manga-
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nese, and vanadium, which have little ore value and probably
originate from the lithology and rocks in the surrounding area.
It is important to note that these results reveal polymetallic
mineralization of lead, zinc, and copper in the exploration
region, resulting in the formation of a significant system as
indicated by the data.

Cluster analysis

Cluster analysis is a multivariate technique intended to
categorize variables or samples by their similarities within the
group and distinctions between groups. In this instance, the
clustering algorithm and the correlation coefficient served as
the main methods for assessing similarity (Barnett et al., 2014).
The results of the centroid cluster analysis for the geochemical
data are classified into 3 categories: a) The first group includes
lead, zinc, copper, cadmium, and arsenic. In this group, base
metals and arsenic elements are primarily identified as tracers,
possessing the highest mineralization value and aligning with
the polymetallic mineralization discovered in the explora-
tion zone. b) The second category includes iron and cobalt
associated with vanadium, indicating mafic to intermediate
intrusive bodies in the area, alongside the distribution of the
porphyry diorite mass. ¢) The third group includes manganese
and chromium, along with cerium and ytterbium, which are
probably related to the intrusive bodies in the region and lack
mineralization significance.

Factor analysis

Geochemical reference layers are developed and established
through geochemical multivariate analyses to identify the
optimal reagent or mixture of reagents for the desired miner-
alization. Multivariate analyses can evaluate the significance
of different combinations of geochemical variables (elements)
more effectively (Garrett and Grunsky, 2001; Carranza, 2004,
2010). Considering that mineralization is an uncommon oc-
currence, and that this is merely one of the numerous factors
influencing the alteration of substances in waterway sediments
(Bonham-Carter et al., 1989; Carranza and Hale, 1997), de-
ducing the optimal combination of geochemical reagents for
a particular mineralization type is likewise a challenge.

Factor analysis is frequently utilized in the analysis of
geochemical data. It seeks to explain variability in a set of
multivariate geochemical data. This process entails reducing
the dimensions of the data and variables to reveal hidden con-
nections among elements by identifying a specific number of
factors (Tripathi, 1979). Factor analysis is a statistical method
that uses the complete data matrix, such as the correlation or
variance-covariance matrix of variables, to produce a linear
factor. Each component in the linear relationship is given a co-
efficient that reflects its importance within the intended factor.
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Although it is recognized that geochemical data seldom follow
a normal distribution, factor analysis, like many statistical
techniques, is ideally performed on data that are either normally
distributed or approximate normality. To improve the outcomes
of factor analysis and identify the most effective multi-element
combinations that indicate mineralization, a refined stepwise
factorial analysis (SFA) technique was developed to determine
the ideal multi-element combination(s) representing a particu-
lar type of mineralization. This method consists of two main
phases known as "clean factor extraction" and "evaluation of
multi-element effects including importance and calculation of
reliable factor scores". Each of these primary phases contains
multiple internal stages.

Clean factors identification

At this stage, factor analysis is initially conducted on the
main data set that encompasses all the chosen elements. This
phase essentially constitutes the first stage of factor analysis. In
the results of the initial stage, elements that do not contribute
to any factor based on the chosen threshold are excluded, as
the presence or lack of even a single element in the input data
set can significantly influence the result. These components
can be labelled as disruptive geochemical elements and factors
that hinder analysis. Therefore, it is essential to remove these
elements from the dataset and perform a second-stage factor
analysis. This updated analysis may uncover various factors
depending on the combinations of elements, their coefficients,
and the sample's score values. If, during the second stage, there
are components that still fail to meet the defined threshold
for involvement in any factor, they must be removed from
the dataset. Subsequently, factor analysis must be performed
again. If every component in the second stage can be assigned
to a factor, then the initial phase of analysis is complete, and
the extracted factors will be free from any interfering elements.

Usually, traditional factor analysis results in several fac-
tors with different combinations of elements, whereas the
SFA technique provides clearer and more reliable outcomes
by identifying and discarding non-representative elements.
In relation to this issue, and considering the data and the type
of mineralization sought, one or more significant key factors
can be identified. Nonetheless, in comparison with traditional
factor analysis, the number of factors is reduced, the range of
changes covered is expanded, and, importantly, the predictive
accuracy is improved.

In factor analysis, the primary emphasis is on removing
geochemical noise that continuously hinders the statistical
assessment of the data. Consequently, clean factors were es-
tablished by eliminating geochemical noise, resulting in the
identification of ultimate mineralization-representative factors
that guide the mineralization process. Moreover, since a single
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factor influences various variables, methods exist to simplify
the interpretation of factors while preserving the same degree
of involvement. These methods involve factor rotation, specifi-
cally employing the Varimax technique for data rotation in this
research (Kaiser, 1958). This method applies the KMO value
to evaluate the accuracy of the factor analysis results and to
verify the adequacy of the data sample size. High KMO values
support factor analysis, whereas low values hinder it. KMO
values near 0.9 are considered very suitable for factor analysis,
while values close to 0.8 are deemed adequate. Values near 0.7
suggest balanced factor analysis, values close to 0.6 represent
average adequacy, and values at or below 0.5 are considered
insufficient. It is essential to note that the factor analysis was
performed on log-transformed data, and the factor thresh-
old was established at 0.5 within this interval. According to
Table 3, the KMO value derived from the SFA is 0.79, which
falls within the suitable category as defined in geostatistical
literature (Barrie et al., 2023).

Table 3. KMO parameter value in the study area dataset

Tabela 3. Warto$¢ parametru KMO w zbiorze danych badanego
obszaru

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 0.79
Approx. Chi-Square 4579.08
Bartlett’s Test of Sphericity Df 105
Sig. 0

Factor analysis was performed exclusively on arsenic,
cadmium, cerium, cobalt, chromium, copper, iron, manganese,
lanthanum, nickel, lead, sulfur, ytterbium, vanadium, and zinc.
Analysis of these 15 elements resulted in 4 factors, as shown
in Table (4). This analysis includes only the clean factors, with
all geochemical interferences removed.

According to Table 4, the first factor accounts for around
50.3% of the variance and includes cerium, cobalt, chromium,
copper, manganese, lanthanum, lead, and zinc. This factor
distinguishes two separate categories of elements. The main
group is mainly influenced by elements in the silicate minerals
network (lanthanum, cerium, cobalt, and nickel), whereas the
secondary group is influenced by elements found in ore-forming
minerals (lead, zinc, and copper). These elements may be found
in both igneous rocks and mineral veins. In general, this factor
is particularly important due to the presence of copper, lead,
and zinc. The second factor, which represents about 23.65%
of the variance, includes arsenic, cadmium, copper, lead, and
zinc. The presence of these elements together is significant.
This factor is associated with the development of ore in poly-
metallic hydrothermal veins or intrusive bodies, which aligns
with expectations based on their quality in geochemical data.



Table 4. Result of factor analysis conducted in the study area

Tabela 4. Wyniki analizy czynnikowej przeprowadzonej w obsza-
rze badan

Factor Component
1 2 3 4

As 0.574 0.700 -0.017 0.095
Cd 0.514 0.839 -0.014 -0.019
Ce 0.766 -0.332 0.421 0.190
Co 0.886 —-0.341 —-0.199 —-0.026
Cr 0.837 -0.35 0.147 0.091
Cu 0.733 0.616 0.047 —-0.088
Fe 0.846 -0.346 -0.182 -0.264
La 0.804 -0.355 —-0.012 0.238
Mn 0.934 -0.274 0.158 -0.104
Ni 0.411 —-0.128 —0.486 0.736
Pb 0.602 0.782 -0.017 0.022
S —-0.166 0.167 0.679 0.281
Yb 0.720 -0.338 0.509 -0.122
\Y 0.693 -0.334 —-0.403 —-0.260
Zn 0.741 0.650 —-0.047 —-0.068

The third factor includes sulfur and ytterbium. This factor is
unlikely to be related to mineralization, given the common
values in this area. The fourth factor includes nickel, which
accounts for around 6% of the variance and does not appear to
be particularly significant for exploration based on its values
in the exploratory area.

Multilayer perceptron estimator
Data augmentation

As previously noted, the database of the study area con-
tained only 153 geochemical samples. This posed a significant
problem due to the limited number of samples, potentially
resulting in imbalances in error calculations. The high imbal-
ance in computations can hinder the classification rules, lead-
ing to inadequate model estimation and accuracy assessment.
Moreover, a limited number of samples in the training data
causes models to struggle to capture the inherent complexity
of the input-output relationships in high-dimensional data.

Table 5. Classification values in the Rose method
Tabela 5. Wartosci klasyfikacji w metodzie Rosego
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To address these problems and enhance the training of machine
learning models, data augmentation techniques were employed
to expand the data space by generating artificial samples based
on the fundamental structure of the actual data (Chatterjee
et al., 2022). Various data augmentation techniques have been
proposed, including flipping and rotation (Simard et al., 2003),
clipping and scaling (Dieleman et al., 2015), and altering the
intensities of the RGB channels (Krizhevsky et al., 2012). The
key principle of data augmentation is that the applied transfor-
mations should not change the semantic meaning of the labels
(Hinton et al., 2012). A suitable data augmentation technique
is presented that maintains both the diversity and geological
integrity of the augmented data. The basic concept behind this
augmentation technique is to incorporate random noise into
the data while ensuring the information remains geologically
meaningful. Neural networks such as the multilayer perceptron
emphasize the spatial distribution and correlations of the data
rather than the values at specific points (typically the cell for
deposit or non-deposit). Therefore, adding noise to the data
can not only preserve the majority of its spatial features but
also address the issue of limited training samples. In this re-
search, two data augmentation techniques were used: a) Adding
noise: In this technique, random noise drawn from a normal
distribution is added to the values (including Au, Ag, Cu, Pb,
and Zn). This noise is scaled to the standard deviation of the
values, giving the data a more natural and realistic appear-
ance. b) Shifting coordinates: In this method, the coordinates
(X, Y, and Z) are randomly shifted within a designated interval
(default 0.1), helping to generate data variability and simulate
different conditions. Ultimately, the original data were merged
with the newly generated data from these two techniques,
increasing the total data count from 153 to 4105.

Modelling
According to geochemical sampling of the study area, the
grades of gold, silver, copper, lead, and zinc were available.
Initially, the mean and standard deviation were used to distin-
guish the anomalous population from the background (Table 5).
Using the derived intervals, the elemental grade values
were categorized into 5 classes, ranging from class 1 (of least

Classified Ag [ppm] Au [ppm] As [ppm] Cu [ppm] Pb [ppm] Zn [ppm]
MIN_AVE 0.12_0.25 0.005_0.009 6_11.6 19 _26.2 9221 46_69.8
AVE_AVE + STDEV 0.25_0.32 0.009_0.013 11.6_17.2 26.2.29.3 22.1_36.8 69.8_82.4
AVE + STDEV_AVE + 2STDEV 0.32_0.39 0.013_0.018 17.2.22.9 29.3 323 36.8_51.4 82.4 95.1
AVE + 2STDEV_AVE + 3STDEV 0.39_0.46 0.018_0.022 22.9 28.6 323 354 51.4_66.1 95.1_107.7
AVE +3STDEV_MAX >0.46 >0.022 28.6_45.7 35.4 36 66.1 128 >107.7
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exploration importance) to class 5 (of greatest exploration
importance). Subsequently, to assess the grade using the intel-
ligent multilayer perceptron method, the model output was the
grade of one of the elements (target variable), and the model
input consisted of the grades of the other four elements. Next,
the hyperparameters influencing the performance of the mul-
tilayer perceptron estimator for assessing the grade in the test
set were determined for each element (Table 6).

It is important to highlight that Adam is a widely used adap-
tive learning rate optimization algorithm in machine learning,
offering improvements over traditional gradient descent meth-
ods. It calculates individual learning rates for each parameter
based on both momentum (smoothing updates) and RMSProp
(normalizing updates based on squared gradients). This solver
operates based on an initial setup. The procedure is as follows:
initialize parameters 6, the first moment vector m, = 0, and
the second moment vector v, = 0. Set the learning rate a, the
exponential decay rates 8, and f,, and a small constant €. This
solver uses the update rule for each iteration #:

1. Calculate gradient: g, =V, 1,(0);
2. Update first moment estimate: m, = fim,_; + (1 — B,)g;
3. Update second moment estimate: v, = f,v,_; + (1 — f))g/%
4. Compute bias-corrected first moment estimate:
’:’:lt = mt/l - ﬁlt;
5. Compute bias-corrected second moment estimate:
9[ =V, / 1- ﬁ 2’ 5
6. Update parameters: 6, =60, , —a / Jy, +em,.

Table 6. Optimal hyperparameters for each model
Tabela 6. Optymalne hiperparametry dla kazdego modelu

Adam’s advantages include computational efficiency,
suitability for large datasets, robustness to noisy gradients,
and relative insensitivity to hyperparameter tuning. Potential
limitations include generalization issues in some cases and
increased memory requirements. It is generally considered
a good default choice for many deep learning tasks and for
rapid prototyping.

Estimators validation

Following the estimation of the test data by the estima-
tor, the root mean square error (RMSE) and mean absolute
error (MAE) criteria were computed using the observed and
estimated values in the test set, as outlined in equations (7)
and (8), respectively.

RMSE = (7

®)

where:
t; — actual value of the parameter,
a; — value assessed by the estimator.

Additionally, accuracy, precision, recall, and f1-score cri-
teria were calculated to validate and compare the efficiency of
each model (Table 7). The values of these criteria demonstrate
the strong evaluative performance of this approach.

Input variables Target ;22::3; Affltri::tlit::ln l;ie(idsi:e Max iteration Solver rLa::;:iitI;il
Ag, Cu, Pb, Zn Au 4/5/10/1 tanh 2 200 adam 0.025
Au, Cu, Pb, Zn Ag 4/5/10/1 tanh 2 200 adam 0.010
Au, Ag, Pb, Zn Cu 4/5/10/1 logistic 2 200 adam 0.025
Au, Ag, Cu, Zn Pb 4/10/1 tanh 1 200 adam 0.010
Au, Ag, Cu, Pb Zn 4/5/10/1 tanh 2 100 adam 0.025

Table 7. Validation criteria calculated for the multilayer perceptron neural network

Tabela 7. Kryteria walidacji obliczone dla sieci neuronowej — perceptron wielowarstwowy
Input variables Target RMSE MAE Accuracy Precision Recall Fi score
Ag, Cu, Pb, Zn Au 0.47 0.08 95.78 95.74 95.74 95.74
Au, Cu, Pb, Zn Ag 0.35 0.12 88.05 87.77 87.77 87.77
Au, Ag, Pb, Zn Cu 0.68 0.33 73.17 72.80 72.80 72.80
Au, Ag, Cu, Zn Pb 0.61 0.26 79.08 77.60 77.60 77.60
Au, Ag, Cu, Bp Zn 0.61 0.30 72.93 72.83 72.83 72.83
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Results

Anomalies evaluation using multivariate analysis

Geological findings in a particular area lead to the devel-
opment of anomaly maps, which are crucial for identifying
potential areas. Typically, defining a geochemically anomalous
area involves considering parameters such as the number of
anomalous samples and their distribution of each element,
the trend of the anomaly expansion, the extent of the promis-
ing zone, the exact location of the anomalous samples, the
intersection of geochemical anomalies with aerial geophysical
anomalies and tectonic features, the rock facies in the anoma-
lous environment, and, ultimately, the comparability of the
emission value of the target element with its emission value
across diverse primary and secondary environments. After
conducting a statistical analysis of the data, anomaly maps
for gold, silver, copper, lead, and zinc were generated and
presented. It is important to note that the maps were developed
and displayed using ArcGIS software. The collected samples
were statistically analyzed and subsequently classified and
color-coded within the software. The classification intervals
employed in the neural network method (Table 5) were also
used to create the element distribution maps.
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The concentration of gold ranges from values below the
detection limit of the analyzer to a maximum of 43 ppm.
This element exhibits no first- or second-degree anomalies,
while third-degree anomalies are more concentrated in the
northeast, southeast, and central parts of the area (Figure 5).
The largest anomaly of this element is located in the northern
section of the region. The predominant lithology in these
areas comprises diorite masses that have intruded into the
sedimentary rocks of the Sefidabeh formation and associated
metamorphosed rocks.

The silver concentration ranges from a minimum of
0.12 ppm to a maximum of 0.42 ppm. According to the dis-
tribution map, a significant silver anomaly is present in the
northern section of the area (Figure 6). The geology of these
areas consists of a diorite body and the altered Sefidabeh
formation. This anomaly corresponds with those observed for
gold, arsenic, and copper.

Copper concentrations range from a minimum of 19 ppm to
a maximum of 103 ppm. According to the copper distribution
map, the main anomalies are scattered across the northern,
northeastern, and southeastern regions of the area (Figure 7).
In terms of lithology, the outcrop area includes units of the
Sefidabeh formation and a diorite mass.
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Rysunek 5. Mapa rozktadu ztota wedtug metody Rosego
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Figure 9. Zinc distribution map by Rose method
Rysunek 9. Mapa rozktadu cynku wedlug metody Rosego
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Lead concentrations in the region vary from 9 ppm to
544 ppm. The most notable anomalies of this element are
located in the northern and central parts of the area. The pri-
mary lead anomaly in the northern area is associated with the
lithology of the metamorphosed Sefidabeh formation and the
diorite mass (Figure 8).

Zinc levels range from 46 ppm to 538 ppm. According to
the zinc distribution map (Figure 9), anomalies are dispersed
throughout the northern, northeastern, southeastern, and central
regions of the area. Zinc anomalies in the northern and central
areas align with those observed for lead.

The presence of gold, arsenic, and silver anomalies in the
study area indicates hydrothermal vein type mineralization.
Moreover, the occurrence of copper, lead, and zinc anomalies
suggests the potential for polymetallic mineralization within
the study area.

Heavy minerals studies

The examinations of heavy minerals is essential for identify-
ing both primary deposits and placer deposits during exploration
(Dill, 1998). Studies of heavy minerals in Central Europe and
Canada (Eyles and Kocsis, 1989), as well as alluvial sediments
in New Zealand (Youngson and Craw, 1996), have led to the
identification of gold mineralization. Furthermore, the study
of heavy minerals can aid in determining the characteristics
of the source area (sedimentary-volcanic rock types) and the
extent of alteration in the geological formations of the area
(Westerhof, 1986). Therefore, identifying the origin and source
can significantly influence the concentration of heavy minerals
as tracers for assessing mineral potential.

Heavy mineral studies have demonstrated that sampling
alluvium can assist in locating prospective areas of mineral
deposits. In the study area, 59 samples were selected and
analyzed from suitable sites based on the distribution of rock
types and extensive alluvial networks. Results from these
studies indicate 10 records of mineral deposits (associated
with mineralization). The identified minerals include native
gold, native copper, galena, cinnabar, malachite, cerussite, py-
romorphite, mimetite, vanadinite, and wulfenite. Additionally,
chromite appeared as rounded grains in most heavy mineral
samples, which was considered unusual, as there are no ul-
tramafic outcrops or chromite mines in the vicinity. Based on
this observation, analyses of heavy minerals were conducted
on 2 sand samples from the region, both of which contained
chrome. This study found that chromite minerals from distant
areas, such as the 1:100,000 Bandan sheet containing ophiolitic
formations and chromite mines, were transported to the region
by wind-blown sand. This phenomenon is likely explained
by the 120-day winds of Sistan. Various other minerals such
as magnetite, hematite, sapphire, andalusite, pyrite, oxidized
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pyrite, limonite, and others were also frequently recorded. Due
to the semi-quantitative characteristics of the results, conven-
tional statistical inferences cannot be directly applied to heavy
mineral studies. Given the importance of ore deposits in the
study area, attempts were made to represent minerals exhibit-
ing similar behaviors or distinctive traits (such as the presence
of a specific element) on a single map. The Janja region is
known for significant minerals belonging to the gold, copper,
and lead mineral families. The heavy mineral distribution map
(Figure 10) illustrates the anomalous regions recognized for
various minerals based on the heavy mineral analyses.

The results of heavy mineral investigations indicate that the
study area is rich in mineral resources. Celestine and barite, as
non-magnetic minerals, hold significant value. Additionally,
other non-magnetic minerals such as apatite, rutile, zircon,
leucoxene, sphene, and pyrite are present in minor and scattered
quantities, along with calcium carbonate measured in grams
per ton. Minerals found in the medium magnetic section, also
measured in grams per ton, include hematite, ilmenite, py-
roxene, amphibole, and occasionally pyrite. The only mineral
present in the hypermagnetic fraction is magnetite; however,
its concentrations render it economically unviable.

Ore-forming minerals, with the exception of a few such
as magnetite, ilmenite, chromite, and hematite, fall into the
category of non-magnetic minerals. Gold occurs as part of the
crystal structure in non-magnetic minerals and can be detected
through laboratory methods (Carman, 2005). In general, heavy
minerals studies regarding ore significance in the area can be
classified into three categories (Figure 11): 1) Main minerals
associated with gold mineralization, including native gold and
cinnabar. 2) Indicator minerals of copper mineralization, such
as native copper and malachite. 3) Indicator minerals associ-
ated with polymetallic mineralization, such as lead, cerussite,
mimetite, pyromorphite, vanadinite, and wulfenite.

Lithogeochemical explorations

Geochemical exploration is a technique used to locate
mineral deposits, which contributes to reducing exploration
costs and identifying promising regions for further investiga-
tion (Prendergast, 2007). Lithogeochemical studies, as an
exploration method, involve examining the distribution and
concentration of various elements in rocks, detecting anomalies,
assessing geochemical halos, and developing zoning models.
These approaches aid in revealing concealed mineral deposits
(Venkataraman et al., 2000).

Bedrock samples are commonly evaluated to detect pri-
mary dispersion halos associated with hidden mineral de-
posits (Eilu et al., 2001). Lithogeochemical sampling was
conducted in both the northern and southern drainage basins
of the study area.
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Figure 10. a) Scatter map of gold indicator minerals (gold + cinnabar); b) Scatter map of copper indicator minerals (native copper +
malachite); ¢) Scatter map of lead and zinc indicator minerals (galena, cerussite, mimetite and pyromorphite) in the study area

Rysunek 10. a) Mapa wystgpowania mineratdw wskaznikowych zlota (ztoto + cynober); b) mapa wystgpowania mineratow wskazniko-
wych miedzi (miedz rodzima + malachit); ¢) mapa wystepowania mineralow wskaznikowych otowiu i cynku (galena, cerusyt, mimetytu

i piromorfit) na badanym obszarze

To verify the position of anomalous samples identified
through geochemical and heavy mineral investigations, ham-
mer prospecting was conducted in the study area. These in-
vestigations were conducted in the northern and southern
regions, where the anomalies were concentrated, leading to
the identification of polymetallic veins containing gold, sil-
ver, copper, lead, and zinc mineralization in both sections. In

the northern region, 13 mineralized samples were collected,
and the concentration of polymetallic elements was assessed.
Consequently, elemental maps illustrating the distribution
of gold, silver, copper, and lead in the northern region are
presented (Figure 12). During hammer investigations in the
southern part of the specified area, various veins of polymetallic
mineralization were identified.
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Figure 11. a) Presence of gold; b) Gold along with cinnabar; ¢) Mimetite, pyromorphite and vanadinite; d) Galena in heavy mineral
samples (The gold grains size is about 25 to 100 )

Rysunek 11. a) Obecnos$¢ zlota; b) ztoto wraz z cynobrem; ¢) mimetyt, piromorfit i wanadynit; d) Galena w probkach mineratow
cigzkich (wielkos¢ ziaren zlota wynosi okoto 25-100 p)
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Figure 12. Grade maps:: a) gold; b) silver; ¢) copper; d) lead for mineralized samples obtained from the northern region

Rysunek 12. Mapy koncentracji: a) ztota; b) srebra; ¢) miedzi; d) otowiu dla zmineralizowanych probek uzyskanych z regionu
ponocnego
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Figure 13. Proposed zones for the continuation of exploration operations

Rysunek 13. Proponowane strefy dla kontynuacji dziatan poszukiwawczych

Field operations and anomaly control

Following the analysis of geochemical samples using the
Rose method, a set of encouraging results was obtained. These
anomalous areas may be associated with mineralization events
and geochemical halos observed at the surface, or they may be
related to mineral contamination or spurious anomalies within
the area. It is important to note that the anomalous watershed
regions were re-examined during field operations. Samples
were collected from mineralized and altered zones and for
further tests, including chemical analysis and preparation of
thin or polished sections. By analyzing the results of these
samples, the presence of economically valuable mineralization
in the anomalous area can be confirmed. Based on geological
evidence and data obtained from the investigated area, three
zones encompassing approximately 71 km” have been identified
in the study area as potentially rich in polymetallic deposits of
gold, silver, copper, and lead (Figure 13).

Anomalies evaluation using multilayer perceptron
network

As previously noted, the multilayer perceptron neural net-
work approach was also employed to identify prospective
mineralized zones. The outcomes of this method were pre-
sented as distribution maps for gold, silver, copper, lead, and
zinc (Figure 14).

Conclusions

Analysis and assessment the geochemical studies and
anomaly monitoring indicate that the study area has signifi-
cant potential for polymetallic mineralization of gold, silver,
copper, lead, and zinc. Evidence supporting this mineralization
includes the following:

* High concentrations of arsenic, lead, and zinc in the wa-
terway sediment samples from the area;

* High correlation (often exceeding 90%) between arsenic,
cadmium, lead, zinc, and copper in river sediment samples;

» Relationship between lead, zinc, copper, and arsenic anoma-
lies in the area;

» The presence of lead, zinc, and copper as an ore-forming
group shows a variability of 50.3% in factor analysis;
Results from preliminary heavy mineral analysis and anom-

aly control in indicate the presence of polymetallic deposits

of gold, silver, copper, lead, and zinc in the region. Indicators
of this mineralization include:

* High concentrations of arsenic, lead, and zinc found in
waterway sediments;

* Compatibility of lead, zinc, copper, and arsenic anomalies
in the area;

* Identification of ore minerals such as native gold, native
copper, galena, cinnabar, malachite, cerussite, pyromorphite,
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Figure 14. Maps generated and threshold values determined using Multilayer Perceptron for: a) gold; b) silver; ¢) cupper; d) lead; e) zinc

Rysunek 14. Wygenerowane mapy i wartosci progowe okreslone przy uzyciu perceptronu wielowarstwowego dla: a) ztota; b) srebra;

¢) miedzi; d) olowiu; e) cynku

mimetite, vanadinite, and wulfenite in heavy mineral

samples.

Heavy mineral anomalies were identified, and field vali-
dation of these anomalies was conducted through hammer
prospecting. In this study, over 40 highly concentrated mining
sites and polymetallic veins containing gold, silver, copper,
lead, and zinc were identified in anomalous areas. These poly-

314

metallic veins commonly occur as siliceous veins ranging in
thickness from 1 to 10 meters and contain minerals such as
galena, sphalerite, chalcopyrite, and malachite. The maximum
concentration of gold, copper, and silver detected in the min-
eralized samples from these anomalous areas is 15.9, 10775,
and 270.3 ppm, respectively. The maximum concentrations
of lead and zinc both exceeded 3%. It is believed that mineral



deposits in the anomalous areas were formed by ascending
fluids and hydrothermal processes along 100 to 110 degree
faults. Based on geological evidence, as well as geochemi-
cal and heavy mineral analyses, three zones covering ap-
proximately 71 km? within the study area have been identified
as potentially rich in polymetallic deposits of gold, silver,
copper, and lead.

Artificial neural networks are parallel systems used to
identify complex patterns in data. Owing to their parallel
structure, neural networks are capable of performing complex
computations without relying on mathematical models or as-
suming the linearity of many variables. One of the primary
factors influencing the performance of a neural network is the
number of neurons, which significantly impacts the model's
output. Therefore, input variables must be selected in a manner
that maximizes the number of factors influencing the output.
It is important to note that the decision on the number of neu-
rons in the hidden layer depends on experience and testing the
network with different numbers of neurons. In addition to the
number of neurons, other factors such as the activation func-
tion, network structure, initial learning rate, and other factors
influence the performance of the neural network model. These
factors should also be considered when designing the network
to achieve the best network configuration.

This research examined the effectiveness of the multilayer
perceptron neural network's intelligent estimator in predicting
the grade of gold, silver, copper, lead, and zinc, alongside
multivariate statistical techniques. In this approach, the grade
of one element served as target variable, while the grades of
the remaining four elements were used as input variables.
The results confirmed the suitable performance of the model
in estimating element grades. The element grade distribution
maps produced by both the multivariate statistical analysis
methods and the multilayer perceptron neural network indi-
cate that the neural network output maps have identified the
promising areas with greater accuracy. This can led to reduced
exploration costs, including those related to sampling, drilling,
and geophysical operations.
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