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Modeling, algorithmization, and solution of the optimal control problem
for the ethylene production complex under conditions
of incomplete information

Modelowanie, algorytmizacja i rozwigzanie problemu sterowania optymalnego
dla kompleksu produkcyjnego etylenu w warunkach niepetnych informaciji

Elchin Melikov
Azerbaijan State Oil and Industry University

ABSTRACT: As a result of a comprehensive study of the technological units in the multidimensional and multi-connected gas frac-
tionation subsystem of the EP-300 large-scale ethylene and ethane production complex, a generalized formulation of the optimiza-
tion problem for a sequentially connected block of technological apparatus — including elements with fuzzy described states — was
developed. Specifically, a mathematical formulation of the optimization problem for a technological complex for commercial ethylene
production under conditions of incomplete information was formulated. Statistical models were constructed that link output flows with
the quality indicators of the input flow, loads, and operating parameters. The necessity of constructing fuzzy regression models for the
selective hydrogenation reactor of acetylene in an ethane-ethylene fraction and for the ethylene fractionation column is demonstrated
due to the lack of information for their identification. For this purpose, the fuzzy regression method, the £ — D-estimation method, is
proposed. As a result, a multidimensional nonlinear mathematical programming problem with a fuzzy objective function and some fuzzy
constraints is obtained. To solve this problem, a transition to its clear deterministic analog is performed. For this purpose, the present
article applies a universal method for solving mathematical programming problems with fuzzy parameters — namely, the method of
(L-R)-representation of fuzzy numbers. The resulting multi-criteria nonlinear vector optimization problem concerning the operation of
the technological complex for commercial ethylene production under conditions of incomplete information is solved using established
vector optimization methods, particularly the methods of rigid and flexible priorities with two different weights. It is shown that solv-
ing the fuzzy problem using any of the proposed multi-criteria optimization methods yields in the production of commercial ethylene
compared to solving the corresponding problem with a clear objective function.

Key words: technological complex, commercial ethylene, optimal control, hydrogenation reactor, vector optimization, mathematical
model.

STRESZCZENIE: W wyniku kompleksowego badania jednostek technologicznych w wielowymiarowym i wieloetapowym pod-
systemie frakcjonowania gazu w wielkoskalowym kompleksie produkcji etylenu i etanu EP-300, opracowano uogdlnione sfor-
mulowanie problemu optymalizacji dla sekwencyjnie potaczonego bloku aparatury technologicznej — w tym elementoéw o stanach
opisanych w sposob nieprecyzyjny. W szczegdlnosci sformutowano matematyczny opis problemu optymalizacji dla komplek-
su technologicznego produkujacego komercyjny etylen w warunkach niepelnych informacji. Skonstruowano modele staty-
styczne, ktore 1acza strumienie wyjsciowe ze wskaznikami jakoSciowymi strumienia wejsciowego, obcigzeniami i parametrami
eksploatacyjnymi. Wykazano konieczno$¢ skonstruowania modeli regresji rozmytej dla reaktora selektywnego uwodornienia ace-
tylenu we frakcji etanowo-etylenowej oraz dla kolumny frakcjonowania etylenu ze wzgledu na brak informacji do ich identyfikacji.
W tym celu zaproponowano metode regresji rozmytej, a konkretnie metode estymacji £ — D. W rezultacie otrzymano wielowy-
miarowy, nieliniowy problem programowania matematycznego z rozmytg funkcja celu i pewnymi rozmytymi ograniczeniami.
W celu jego rozwiazania dokonano przejscia do jednoznacznego, deterministycznego odpowiednika. W tym celu w niniejszym artykule
zastosowano uniwersalng metod¢ rozwigzywania problemow programowania matematycznego z parametrami rozmytymi, a mianowicie
metode reprezentacji (L-R) liczb rozmytych. Ostatecznie wielokryterialny problem wektorowej optymalizacji nieliniowej dotyczacy
funkcjonowania kompleksu technologicznego produkujgcego komercyjny etylen w warunkach niepeinej informacji rozwigzano przy
uzyciu znanych metod optymalizacji wektorowej, w szczegoélnosci metod sztywnych i elastycznych priorytetow z zastosowaniem
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dwoch roéznych wag. Wykazano, ze rozwigzanie problemu rozmytego przy uzyciu dowolnej z proponowanych metod optymalizacji
wielokryterialnej prowadzi do poprawy wynikéw produkcji etylenu w poréwnaniu z rozwigzaniem odpowiadajacego mu problemu

z jednoznaczng funkcja celu.

Stowa kluczowe: kompleks technologiczny, etylen komercyjny, sterowanie optymalne, reaktor uwodornienia, optymalizacja wektorowa,

model matematyczny.

Introduction

Numerous scientific publications have addressed the opti-
mization and modeling of technological apparatus for ethylene
production. However, these works do not consider the control
problem of ethylene production as a whole, and there are
virtually no studies focused on the optimization of control for
the technological complex for commercial ethylene produc-
tion, upon which the purity and quality of the target product
depend. To a significant extent, the quality of commercial
ethylene depends on the choice of operating parameters for the
hydrogenation reactor of acetylene compounds. The problem
of real-time control of the hydrogenation reactor remains in-
sufficiently developed, and there are no effective methods or
models that account for the operational characteristics of this
catalytic apparatus. The absence of specialized models and
corresponding solution methods has necessitated the devel-
opment of the approaches outlined in this article. Until now,
optimization of technological processes in the low-tempera-
ture rectification apparatus used for ethylene production has
been based on traditional models employing the equation of
component-by-component material and heat balances, phase
equilibrium, kinetic mass transfer dependencies of component
installations, and associated optimization methods such as
unconstrained optimization methods, linear programming, and
dynamic programming. In most studies, process control within
this subsystem has been reduced to solving the optimization
problem for the static operating modes of the technological ap-
paratus, with mathematical models represented as deterministic
functions of operating parameters (Gubitoso, 2007; Sabri, 2014;
Pisarenko et al., 2016; Samedov et al., 2019; Tovbin, 2023).

The technological complex for commercial ethylene produc-
tion of the EP-300 plant, comprising sequentially connected
apparatus, is a complex control object with incompletely defined
states due to a lack of information in assessing the physico-
chemical characteristics of the acetylene hydrogenation reac-
tor. This is associated with the difficulty of determining the
temperature profile of the reaction process and the proportion
of the catalyst’s active surface without direct control, as well
as the inability to accurately assess the states of the selec-
tive hydrogenation process (Ibrahimov et al., 1991; Melikov,
2018, 2020; Melikov et al., 2023; Merdanov and Melikov,
2023; Melikov and Ibrahimli, 2024; Sardarova et al., 2024).
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Therefore, due to the complex nature of the distribution of
elementary reaction rates inside the reactor, the difficulty of
monitoring raw material transformation within the apparatus,
and frequent variations in raw material quality, the mathemati-
cal apparatus of fuzzy set theory is used to identify the model
of the hydrogenation reactor when solving the optimal control
problem of the complex for commercial ethylene production.
Let us formulate a generalized statement of the optimal control
problem for a complex for commercial ethylene production.
As the optimization criterion, we will select the value of the
target product output:

F:Zyzlzlecg@y{ > max (1)
where: )7-Vi is the fuzzy variable representing the quantity of
the v-th commercial product of the j-th installation, c{ is the
price of the v-th commercial product of the j-th installation.

Equations describing the deterministic states of the ap-

paratus link the loads and operating parameters to the output
flows of the installations:

vl =Gl ul), Yi=,M, =1L, j=1,P,v=1,W

2
where: xij is the consumption (quality) of i-th raw material in
the j-th apparatus, and ulf is the /-th control action of the j-th
installation.

Models that account for the fuzzy nature of state assess-
ments in reaction apparatus are described by equations with
fuzzy parameters:

j}l{ :.fj(xija ﬁ[j,tfl)9

Vizl,_M,lzl,_L,j:p+1,m,v=w+l,h

3)

where: ﬁl] (1 1s the fuzzy variable of the /-th control of the j-th
reactor at time ¢ — 1.

Since the output flows of the m-th installation are fuzzy
numbers, the equations of the subsequent m+1,N apparatus
are also fuzzy:

=11 &),

Vi=1,_M,l=1,_L,j=m+1,mN,v=h+1,V

4

where: )E/ is the fuzzy variable of the i-th input flow of the
j-th installation.

Restrictions on the admissible values of operating
parameters:

ul €U/, VI=1L, j=1,N Q)



Equations that characterize the interdependencies of mate-
rial flows for different interconnected apparatus are written in
the form:

Il Y xf ~SR S HY Y] (6)

where: H VJ is a matrix characterizing the interconnections be-

=0,Vj=1,N

tween the outputs of the k-th and inputs of the j-th production
units. According to the regulations, additional constraints are
introduced to meet the quality requirements for output streams:

vh <yl u)<3],Vj=LN,g=1G,I1=1LLi=1,M (7)

where: yé and fé are the lower and upper constraints for the
g-th output stream of the j-th installation.
Load range constraints:

x) <x) <] ®)
where: )_cé and )_ca{ are the lower and upper limits on the d-th
load of the j-th installation.
The quantitative values of the input and output flows of
the apparatuses are subject to non-negativity requirements:
xJ>O V]—lNl—lM )
y/>0,¥j=1,N,v=1V (10)
Thus, the optimal control problem of the studied complex

(1)—(10), including a reaction apparatus operating under con-
ditions of incomplete information, is formulated, where the
models of the installations are described by (2)—(4), the ranges
of the permissible control values u/ are (5), the equations for
the connection of the apparatuses are (6), the requirements
for the values of the loads are (8), (9), the sets of states y{
are (7), (10).

Mathematical statement
of the optimal control problem

The optimal control problem for the complex for com-
mercial ethylene production as a whole is written in the fol-
lowing form:

F:Z Y V@yv—>max

vl =l u)) Vi=1,M,l = ﬁ =1Pv=1W

= a ).Vi=LM =1L, j=p+1my=w+1h

~f=ff()2i’,u/t DVi=LM,l=1L,j=m+1,N,v=h+1V

Y L HY Y] O,Vj=1,

y/gyg(xl/,ul)ﬁy-, Vi=LN,g=1G,I=LL,i=1,M
<xd<xdv1_:1N,g: JA=1LLi=1LM )

u,eU,f, I=1L, j=1,

x/ 20,V = =L,M

y]20,Vj= =LM
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The optimization problem for the apparatus chain (11),
including an element with fuzzy described states, applies to the
complex for commercial ethylene production. This complex
is one of the main blocks of the low-temperature rectification
unit and consists of rectification columns (demethanization,
deethanization, and ethylene fractionation) as well as a reactor
for acetylene hydrogenation in the ethane-ethylene fraction
(EEF). The reactor is a multidimensional and multi-connected
apparatus with complex internal and external connections. Its
operation is managed under conditions of information deficit
due to limited understanding of the relationships between
operating parameters and loads that vary over a wide range,
the inability to control the temperature distribution within the
reactor, and the degree catalyst deactivation. Consequently,
there is a need to incorporate the informal experience of process
personnel into reactor management. In addition, the variability
of the magnitude and quality of the input load requires either
continuous adaptation of models or the use of a mathematical
framework capable of constructing models that remain valid
under wide-ranging disturbance conditions. Therefore, optimi-
zation of the studied complex is reduced to solving the optimal
control problem under conditions of incomplete information.
The yield of commercial ethylene is considered as a criterion
for the optimization problem of the complex:

F:CISQJ’}IS —)nf1;1/x

(12)

where: Jg is a yield of commercial ethylene, and C,g is its
unit price.

The mathematical dependencies necessary to describe the
installations of the complex represent a system of constraints
of the following form:

Yo =J1 (X1, X2, X3, X4, X5, Uy, 1) (13)
Y1 =1 (%15 X2, X3, X4, X5, Uy, Up) (14)
Y8 =13 (X1, Xa, X3, X4, Xs, Uy, Up) (15)
Yo = fa (X1, X2, X3, X4, X5, Uy, Up) (16)
Y10 =Js (Xg, Xo, U3, Uy) (17)

11=100-y, (18)
Y12 = fo (x3, X9, U3, Ug) (19)
Y13 =17 (X9, Uz, uy) (20)
Y14 :fg(xga X9, U3, Usg) (21)
Y15 = Jo (X105 X115 Us 415 g 1) (22)
Y16 = Jro(x105 X115 s 41> e 1) (23)
Mg = fii(Gigs X7, g, ug) 24
V19 = fi2(%17, uz, ug) (25)

where: x|, x,, x3, X4 are the amounts of pyrogas entering the
K-10 demethanization column from the compression subsys-
tem, x5 is the methane content in the feed to the K-10 column,
v and y5 are, respectively, the ethylene content in methane and
the methane flow rate from the top of column K-10, yg and
xg are the amounts of the hydrocarbon mixture ¢, and higher,
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respectively, in the bottom of column K-10 and the feed to the
deethanization column K-11, yg and x4 are the content of the
sum of ¢, hydrocarbons, respectively, in the bottom of column
K-10 and the feed of column K-11, y,, and y;; are, respectively,
the amount of EEF and the ethylene content in the top product
of column K-11, x;, and x,; are, respectively, the flow rate of
EEF to reactor R-2 and the ethylene content in the EEF, y, is
the propylene content in the distillate of column K-11, y,5 is the
flow rate of mixture c; and higher from the bottom of column
K-11, y,4 is the content of ethylene and ethane in the bottom
of column K~11, 37 is a fuzzy variable describing the flow
rate of EEF from reactor R-2, y;5 and J,4 are fuzzy variables
describing the ethylene and acetylene content, respectively, in
the EEF at the reactor outlet, X;¢ and X;; are fuzzy variables
describing the acetylene content and the amount of EEF in
the feed to columns K-12,13, j,4 and 9 are fuzzy variables
describing the amounts of ethylene and ethane, respectively, at
the outlet of the K-12,13 ethylene fractionation column, #; and
Uy, u3 and uy, u; and ug are the temperatures of the top and the
bottom of columns K-10, K-11, and K-12,13 respectively, Us
and g ,_ are fuzzy variables describing the reactor temperature
and the hydrogen-to-acetylene ratio in the EEF at time ¢ — 1.

Conditions of material balance and equations of technologi-
cal apparatus connection:

Y1ty <Iix (26)
YiztYio=xg (27)
Vig T V19 < X7 (28)
Xg = Vs (29)
X9 = Y9 (30)
X10 = Y10 (1)
X16 = V16 (32)
X7 =17 (33)

Ranges of change in the qualitative and quantitative char-
acteristics of the output flows of the installations, as well as
the requirements for non-negativity of the flow values for the
apparatus:

Y6 <Y6<Ds (34)
N3 <03 <3 (35)
N5 D15 < Vi (36)
V16 < V16 < V16 (37
x;20,Vi=15 (38)
», 20, Vv=6.14 (39)
5,20, vv=15.19 (40)
Intervals of control actions change:

W <u <y (41)
Uy Sty iy (42)
Uy Suy<iiy (43)
uy <uy <iy (44)
sy Sl Sis, (45)
g g S,y Sllgy (46)
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Uy <uqy <ty 47)
ug <ug <iig (48)
The optimal control problem of the complex is finally

written in the form:

F=Ci3© iy —> max

Y6 =J1 (X1, X2, X3, X4, X5, Uy, 1)
7= 1o (X1, Xa, X3, X4, Xs, Uy, Up)
Y8 =S5 (X1, X2, X3, X4, X5, Uy, Up)
Yo =fa (X1, X2, X3, X4, X5, Uy, Up)
Y10 =fs (xg, Xo, U3, uy)
yuu=100-y,
Y12 = o (Xg, Xo, U3, Uy)
Y13 = J7 (xg, Xo, U3, uy)
yis=fs (x 8,x 9,u 3,u 4)
Y15 = Jo (X105 X115 Us 15 e 1)
Y16 = J10(X105 X115 s 415 U 11)
Yig = fii(Gigs X7, g, Ug)
Y19 = Ji2(F17, U7, ug)
Y1 +y STy
Vi3 T VoS Xg
Y1+ V9 S X7
Xg =g
X9 = Vo
X10 = V1o
X6 = M6
X17 =07
Y6 <6 < Ve
N3 <03 <3

D15 S V15 < Vis

V16 < V16 < V16
xiZO,Vi=E
>0, Vv=06.14
~v2(~), Vv =15.19
w <up <

(49)

Uy Sy <up

ug < Ug < 178
The resulting problem is a nonlinear optimization problem
with fuzzy parameters.

Modeling and algorithmization
of the optimal control problem

Let us proceed to model the apparatuses and algorithmize
the solution to the formulated problem. During modeling,



each rectification column is considered as an object whose
inputs are the feed flow rate, feed quality, and top and bottom
temperatures. The outputs of the object are the quantitative and
qualitative characteristics of the rectification column’s output
stream. The columns are of the same type. The column top
and bottom temperatures are the controls, and the flow rate
and feed analysis are the controlled disturbances. Linear and
nonlinear approximations were used for model identification.
The obtained results of column model identification are sum
marized in Table 1.
Finally, the rectification column models have the follow-
ing form:
1. demethanization column K-10:
— nonlinear model for the ethylene content in methane at
the top of the column:
Y6 =—-0.04323x, — 0.00032x — 0.10001x, + 0.00159x5 +
+ 0.04929x; + 0.0022x7 — 0.00421x, + 0.00158x7 —
—0.01668x5 + 0.00062x2 + 0.31962u; + 0.00144u? —
0.31264u, + 0.02872u3 + 20.52124
— linear model for the methane flow at the top of the
column:
y7 = 0.14469x, — 0.0156x, + 0.87061x5 — 0.21026x, —
—0.09507x5 — 0.00067u; — 0.6129u, + 10.82499
— linear model for the flow rate mixture of hydrocarbons
¢, and higher from the column bottom:
3 =0.90739x; +0.79843x, + 0.05703x; + 0.20882x, +
+0.03504x5 — 0.01682u; + 0.13228u, + 17.54576
— linear model for the content of the ¢,-hydrocarbons sum
in the bottom product:
Yo =-0.27294x, + 0.08091x, + 1.18648x; + 0.17484x, +
+0.18684x5 — 0.10068u, + 0.73561u, + 71.56131
2. deethanization column K-11:
— linear model for the EEF flow rate at the top of the
column:
Y10 =0.79683x5 + 0.05245x9 — 0.1009 125 — 0.92595u, +
+48.57524
— linear model for the propylene content in the column
distillate:
V12 =0.01452x5 + 0.03425x9 + 0.0756315 — 0.57923u, +
+1.34842
— linear model for the flow rate of a hydrocarbons ¢; and
higher mixture from the column bottom:
y13=0.27284x5 — 0.03749x4 + 0.66626u, — 37.65547
— linear model for ethylene and ethane content in the
column bottom product:
V14 =-0.03145x5 + 0.02557x9 — 0.08649u3 + 0.05606u, —
—6.9556.
Due to the insufficient equipment with measuring instru-
ments, which prevents full control over the physical and chemi-
cal transformations of raw materials in the reactor, difficulty
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in assessing the catalyst state and the temperature profile of
the reaction zone, as well as the complexity and number and
relationships between the reactor’s state variables, constructing
a mathematical description for this apparatus using traditional
methods and models is challenging. This raises the problem
of constructing a reactor model using the knowledge of pro-
cess personnel, formalized using the apparatus of fuzzy set
theory. In this case, the reactor outputs are described by fuzzy
variables, which in turn leads to the fuzzy description of the
ethylene fractionation column. When constructing models
for the optimal control of the ethylene production block, the
dependencies describing the reactor and the ethylene fractiona-
tion column should be based on data collected during a passive
experiment. The traditional method for modeling is regression
analysis. However, when processes inputs and outputs are fuzzy
variables connected by fuzzy relationships, traditional statisti-
cal inference is inapplicable. This necessitates a method that
enables modeling the dependencies between several variables
while accounting for their fuzzy nature. This method is fuzzy
regression (Tanaka et al., 1982).

The fuzzy regression method employed was the
E- D-estimation method (Wang and Li, 1990), briefly described
below. Let X, X, ...,
in the set of all fuzzy numbers F(R). Let’s assume a linear

X, be fuzzy variables taking values

relationship:
_Xo=pX A X t X,
where f;, i =1,n are unknown real coefficients, and

Lif x=1 ,
0,if x#1

(50)

X, (x) = { 1

Let E=X", ‘E(xg_ N-EE j)‘, where E(x{,) and E(%;)
denote the entropies of the j-th fuzzy observed value and the
J-th fuzzy estimate of the value x;, where Xy, =X B; - x;;.
Now consider the entropy of fuzzy sets (E(X) = I w (x)dx),
where the membership function is also a fuzzy set. Let us
consider fuzzy sets whose membership function is given in
parametric form:

Ly = N(a,b) _ e—ir(x—a/b)Z
Lif x=a
0,if x#a

The criterion for solving the problem of estimating the
real coefficients S, f,, ..
the entropy integral deviation of the estimated values of the
dependent variable from the entropy of its observed values:

(51)
when: 5 =0, N(a,0) :{

., B, is the condition for minimizing

DB~ B | = min T |E G )~ B )| (2
provided that:
ATLD(x %) 2 h (53)
where: D is the degree of closeness between fuzzy numbers,
and / is a given standard of closeness (4 € (0,1]),
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selected in accordance with the requirements of the
problem: )?gj =X Bixg. ) =1m.
The formulated problem (52)—(53) can be transformed. It
is known that:
S |ECE ) - EG )
=2 ‘boj' -2 |:Bi|'bi]" 2J(Br> 5 By)
and that the degree of proximity:

= = a0/727:1 Ba, | .
D(xy:%o;) :{”[bo LB, } if

otherwise: D(xgj,fgj) =0
Using the last expression, the problem (52)—(53) is written as:

(54

%, -2 .B,a,j .
b g, € 0D 53

min J(By.+-.f,) (56)
under the following conditions:
S By + X |Bilby T () < ag — 1 ()b,
j=1..m 57)
=X |Bilaby + X1 Biay < ag; - aby; (58)
L |Bilaby + Zjy By 2 ag; —aby; (59)

Problem (56)—(59) can be transformed into a series of linear
programming problems. As a result, the estimates 3, ..., 5, of
the unknown real coefficients are determined.

When constructing the models, the reactor is considered as
an object with the following inputs: the flow rate of the EEF
(FEp), the ethylene content in the EEF (Q,y,), the hydrogen—
to-acetylene ratio in the EEF (Qy1,)/(O¢,n,), and the tempera-
ture in the reactor (7°4%r). The outputs are the ethylene conent
(Q”{;‘;H ,) and acetylene content in the EEF (Q”é‘;Hz). The control
actions are hydrogen-to-acetylene ratio in the EEF and the
EEF temperature. The flow rate of the EEF and its ethylene
content are controlled disturbances. In this case, F55 and
OZ, are crisp variables. However, the variables (Off,)(On,)
and T°% are fuzzy. It is clear that the dependent variables of
the models are O} and Q¢

The parametric assignment of terms in accordance with
(51) for constructing the reactor regression model is provided
in Table 1. The structural diagram of the reactor as a modeling
object is presented in Figure 1.

A linear model of the ethylene content in the EEF at the
reactor outlet was obtained:

Y15 =—0.42177x) © 0.8513x;; ©1.14775
Oii502.62864 ©i1s016.1368
and a linear model of the acetylene content in the EEF at the
reactor outlet:
V16 =—0.77469x901.54689x,(,©0.08771
Oiis ©6.96143 ©iig ©95.11523

When modeling, the ethylene fractionation column is con-

sidered as an object whose inputs are: the flow rate of purified
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Hz/QC2Hz 7-EEF
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Fetr Q&h,

Acetylene
. hydrogenation

mn Y g Qaut
CaHa reactor C2H4

Figure 1. Structural diagram of the acetylene hydrogenation
reactor as a modeling object

Rysunek 1. Schemat strukturalny reaktora uwodorniania acetylenu
jako obiektu modelowania

Table 1. Parameters of mathematical models for acetylene
hydrogenation reactor

Tabela 1. Parametry modeli matematycznych dla reaktora
uwodorniania acetylenu

Variable Acetylene hydrogenation reactor
ame i Qm, T%r
Terms a b a b
Low 2.950 8.703 117 0.986
Medium 4.050 0.256 124 4.098
High 4.500 0.205 133 5.116

EEF coming from the acetylene hydrogenation reactor (Fgzz),
the acetylene content in the purified EEF (Qé’sz), as well

as the top temperature (77,
of the column. The outputs of the object are the amounts of

) and bottom temperature (75)

commercial ethylene (F Oé‘;H ,) and ethane (< O&Hs) produced
in the ethylene fractionation column. The control actions are
the top and bottom temperatures of the column. The purified
EEF consumption and the acetylene micro-impurity content are
considered controlled disturbances. The independent variables
of the models T fo’p and T¢, are crisp. However, as shown above
in the modeling of the reactor, the variables Fiz and Q¢ y,
are fuzzy. Therefore, the dependent variables of the models
F¢u, and FEy, are also fuzzy.

The parametric assignment of terms for the ethylene frac-
tionation column is provided in Table 2. The structural diagram
of the ethylene fractionation column as a modeling object is
shown in Figure 2.

A linear model for the ethane consumption from the column
bottom has been constructed:

P19 =0.19606%,,04.22293u; @ 6.8070914©85.91112
and a nonlinear model for the amount of commercial ethylene
obtained in the column:

Y13 =14.98467 © ¥17,0©0.02088 ® X{7©0.00789 ® X,
0X16025.77907u; © 0.34358 © X7 O u; @
0.14156 ® X7 ©®ug®0.12905 ® X, © ug®904.91



Table 2. Parameters of ethylene fractionation column models

Tabela 2. Parametry modeli kolumn do frakcjonowania etylenu

Variable Ethylene fractionation column
name out et
FEF 0Cm,
Terms a b a b
Low 36 4.098 1-107* 1.0241-107*
Medium 43 0.986 5107 1.7731-10*
High 52 4.098 1-107* 2.0471-107
T T
FEt F 8§‘ﬁ4
—_
Ethylene
Qe fractionation out
CaH2 column FChe

Figure 1. Structural diagram of the ethylene fractionation column

Rysunek 1. Schemat strukturalny kolumny do frakcjonowania
etylenu

Thus, a number of models have been constructed that de-
scribe both deterministic states of the apparatus (demetha-
nization and deethanization columns) and fuzzy states of the
apparatus (acetylene hydrogenation reactor and ethylene frac-
tionation column) under conditions of incomplete informa-
tion. Consequently, the optimization problem for the complex
constitutes a mathematical programming problem with fuzzy
parameters. Let us consider the algorithmization of the optimal
control problem for the complex formulated as a mathematical
programming problem with fuzzy parameters. This is a problem
in which some of the constraints are fuzzy due to the fuzziness
of the controls and the disturbances in the apparatus described
by these constraints. To solve this problem, it is necessary to
move on to a crisp analog for the given constraints. To achieve
this, the method of solving mathematical programming prob-
lem with fuzzy parameters, the (L-R)-representation of fuzzy
numbers, is used below. Then the statement for the optimal
control problem of the complex using extended arithmetic
operations is written as:

F=C18®)~)18 —> max (60)
_ 2 2 2
Y6 = a1 X1 T appXy +ai3xy +apaxy +ajsx3 +ajex3 +
2 2 2
+ay7Xy + aygXxy + ajoXs +ay X5 + by juy +bup +
2
+by3uy + bguy +ayg (61)
V7 =ag1X) +AypXy + ap3X3 + dpgXy + apsXs + byjuy +
+ b227/l2 + 020 (62)
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Vg = a31X| + a3pXy + 33Xy + A3y Xy + a35xs + byjup +

+ byytty + a3 (63)
Yo = ay1X) + agyXy +ay3x3 + agaXg + aysXs + by +
+ byt + ayg (64)

Y10 = as1Xg +asyXg + bsjus + bsyuy + as (65)
V11 = ag1Xg + AgyXg + bgjuz + bytiy + agg (66)
V12 =100—yy4 (67)
V13 =agXg +agxg + byjus + agg (68)
V14 = ag1Xg + agyXg + byjuz + bty + agy (69)
V15 =ag1x11 @ agyxip @ byy ©tis @ byy Oug Dagy  (70)
V16 = a10.1%11 @ ayg2x12 by 1 Otis D byg 5

Qug D ayg (71)
Frg=a 1 0% ®a,0x; ®a30%;

OX @by O X7 Oy @by, O Xpq

Qug @by 3uz3 © X by 4u; Dayy g (72)
V19 =a121 © X7 @byp yuy +byppug +ap (73)
S -y =528 (74)
Yo+ 3~ <S5 (75)
Xj0— V17583 (76)
X0 =720 77
Yig + 9 <Xi7 (78)
Y6 <V6=<Vo (79)
V1a <14 < Ha (80)
Vs <Vis < Jis (81)
Ne<Ne<le (82)
u;<u;<u;, Vj=1. (83)
ug <up <uy (84)
ug < g <ug (85)
Zzyv, Vi=v=8.11 (86)
X6 = V6 (87)
X7 =J17 (83)
x>0, Vi=15 (89)
¥, 20, Vv= 7.13 (90)

The constructed system (60)—(90) is formulated as a prob-
lem with fuzzy objective function and fuzzy constraints. The
considered optimization problem for the acetylene hydrogena-
tion reactor is solved as a mathematical programming problem
with fuzzy parameters.

In the proposed approach to modeling the reactor state as-
sessment, fuzzy numbers of the (L-R) type (Dubois and Prade,
1979) are used. The membership function of such numbers

L(a—u
uy=1 5 °
R[%j for u>a, >0

where: L is the left representation, R is the right representation,

has the form:

) for u<a, a>0

a is the medium value of the fuzzy number, a, and f are the
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right and left fuzziness coefficients. L and R are increasing Vi3 = Q31 Xg + AppXg + bty + ay (102)

functions on the interval [0, ). A fuzzy number of the (L-R) Vig = ag Xg + gy Xo + by i3 + beyiy + ag, (103)

type is written as: 5 (N15>0s> Brs)ir = (G911 + agpXyy + bojus + (104)
A=(a,a,P)1r +hygts + gy, 0175+ boyY 6509105 + boyds)

Let us now transition from problem (60)—(90) to a system (D16:165Bis) r = (@10.1%11 + Ag2%12 + byg 1Us + (105)

with crisp constraints and a crisp objective function. Let us +byg ot + A100-B10.17s T Pro2Y6>Br10.1P5 + Dro2Pe) ik

- 2
(718>Q1s5 Big) g = (a111%17 +ayp 2Xi7 +ayy 3%7%6 + (106)
+byy 1 X17t7 + byy 5 X qUg + by 3X6Us + Dy gty +

write down the (L-R)-representation for the equations describ-
ing the output flows of the catalytic apparatus:

s> 155 B15) 1k = +ay1 0,11 3%1706 + Dy 3Ug06, A1 37 B +
= (ag Xy | + agyXyy + byt + byt + agg +byy 33 Pr) i
by s +boy 65 b0185 + by ) 1 o1 Vig = @iy 1 X17 + by gty +byp g + a5 (107)
(V16-16:Bi6) L = X =y~ 2 S (108)
= (@101 X1 + ay92%12 + byg s + byg ot + Yo+ Vi3 —X% <8, (109)
+0100,b10.175 +D10276>P10.495 + Dio.2P6) Lk (92) X9~ Vi7 <S5 (110)
For the ethylene yield equation, the following (L-R)- Xo—Y720 (111)
representation was obtained: Vig T Vig < X7 (112)
(1s-@is. Big) g = Y6 < V6 <o (113)
= (@) 1397 + @1 X7 + a4y 3% X6 + By X1, + Nia <014 =D (114)
+byy 5 Xyqug + by 3% 6Ug + Dy gty 0,8y 3X)706 + (V,5:Qis5:B,5) 1k S (J’15=0‘15=_ﬂ15)LR (115)
+by) 3Ug Q6,11 3X17 P16 + by 3UsPre) 93) issss Bis)ir S (s @ss Bis)ir (116)
(V)o@ B16)ir S (y16>a165_ﬁl6)LR (117)
Introducing the following notations: W66 Bi6)ir S Die>@ie0 Pris ) ir (118)
FZy4 u;<u;<u;,Vj=14 (119)
op éalg Uy <u; <y (120)
Br = B Ug <ug < iig _ (121)
2152(215’%5,E15)LR x; =y, Vi=v=7.10 (122)
Zmé(Zm’glG’ﬁls)LR (X165 @16>Pr6) Lk = W16 Ci6> Pre) 1w (123)
Fis 2 (05,0 Bis) r (M%“mﬁwLue =727, B7) e (124)
o e X 20,Vi=15 (125)
3_le j({ls’o_‘ls’ﬁ_ls)LR >0, Vv=6.14 (126)
16 j(ylﬁ’al(”ﬂm)m W18 Big) e 2 (0,20, 80) 1 (127)
J: 16 j (16165 Pr6) 1w For these functions L and R, define the numbers:
Vig ZA()’ls’als’ﬁls)LR &p =sup{u|R(u)=R(0)=l} (128)
is = (Us,5:05) r ) .
iig 2 (g, V6.0 ) 11 Op =inf {u|u >0,R(u)= Sll_}n;R(s)} (129)
The constraints system (60)—(90) is the rewritten as follows: &L = sup{u|L(u) =L(0)= 1} (130)
(F.ap,Br)ir = (V1g: Qs> Big) g = max %94) 5, = inf{u|u > 0.L(u) = lim L(s)} (131)
§—>00
Ve = a Xy +apX; +dy3x; + Xy +asx; + The constraints can be written as follows:
+ X3 + gy XS + g + a1,10x52 + er(B,s—PBis)Sns—y,, (132)
+ byyaty + bypui + by, +bu; +ayg 95) Or(Bis = Bis) < yis =Y (133)
Y7 = Ay X+ ypXy + Ay Ay Xy + AysXs + er(@)s —as) S Vs =y (134)
+ by + byt + ay (96) Op(Qs = 05) <05 = ) (135)
Vg =a31X) T A3pX, T A33X3 T A3y Xy + A35X5 + er(Bis = Bis) < Nis = is (136)
+byyuy + byyuy + ay 7 Sx(Bis = Bis) < Fis = Wis (137)
Yo = Ay X+ ApXy + A3 X3 + Ayg Xy + AysXs + e (s —ays) < Vs — Wi (138)
+byjuy + by, + ayg 98) 6, (@5 —ay5) < Vs = s (139)
V1o = ds)Xg + sy Xo + bsyuy + bsyu, + as 99) Er(B s = Bie) <16 = Yy (140)
Vi1 = A1 Xg T dgyXo + byt + byt + agy (100) S (B = Pie) < Vi~ Yy (141)
Y2 =100 =y, (101) gL(al6_(l16)£y16_Zl6 (142)
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5L(a16_%16)3)% Y6 (143)
Er(Bis = Pi6) < 316 = 16 (144)
Sr(Bis = Bis) < Y16 — 16 (145)
€A1 — i) < V16— Vi6 (146)
8, (06 — i) < V16— V16 (147)
er(Bo—Bis) S vig (148)
Sr(Bo—Pris) < yis (149)
gr(a3—0g) < g (150)
6. (a13—ag) < g (151)

Then the constraints system (94)—(127), taking into account
the principle of constructing an analog for the fuzzy objective
function extremum, can be represented as follows:

F=yg— max (152)
OF = o3 — min (153)
Pe = Prg — max (154)
Yo = Q11X + X, + 3%, +a14X5 + 5% + aexs +

+ap, x4 + algxi + ay9X5 + aLleS2 +byu, + b12”12 +

+ bysu, +b14u§ +ay (155)
V7 = Ay X) + Ay Xy + Ay3X3 + AyyXy + AysXs + byt +

+ byytty + ayy (156)
Vg = a31X) + A3pX,y + A33X3 + A34Xy + AysXs + byyuy +

+ by, +ay (157)
Yo = Ay X + AupXy + Ay3Xy + AguXy + AysXs + by +

+byytty +ay, (158)
Vig = as)Xg + asyXg + bsyus + by, + asg (159)
Vi1 = dgiXg + AgyXo + bgjuis + byt + agg (160)
Vi =100—yy, (161)
Vi3 = A Xg + agyXo + byyus + ayg (162)
Vig = g\ Xg + AgyXo + byjuz + bgyuy + ag (163)
Vis = Qg Xyy + doyXyp + bojis + bojti + agg (164)
Vie = G101 X11 T Ao %15 + Do s + bygyttg + Ay (165)
Yig = d11.1%7 +a11.2x127 +ay 3Xy7 X6 + by Xpgt; +

+ by 2 7u5 + by 3%l + By 4u7 + Ay (166)
Vig = yp1Xy7 + by gty + by pug +apy (167)
a5 =byyys + by (168)
A6 =bio17s + D927 (169)
Qg = a1 3%1706 + by 3UgQ 6 (170)
Bis = by 15 + byr¢ 171)
Bis =bio.19s +bio 296 (172)
Bis = ay13%1706 + by 3g 6,y 3%7 By + ay 5usPrs (173)
z?:l X =y —ys 25, (174)
Vot Vi3 =X <S5, (175)
X0 = V17 <55 (176)
X9 = V1720 (177)
Mg+ Vo S X9 (178)
Ve <Vs<Vs 179)
Vi SVa SV (180)
le—yISSO (181)
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Ns=Ns <0 (182)
Vs~ N6 <0 (183)
V6 =16 <0 (184)
Bs—Bis<0 (185)
Bis = Bis <0 (186)
a5 —a5<0 (187)
s~ <0 (188)
B, —Bis <0 (189)
Bis = PBig <0 (190)
O =0 <0 (191)
0 — 0 <0 (192)
u, <u; <u,vj=14 (193)
u; <u,; <y (194)
ug <ug <iig (195)
X; =yv,Vi=v=7._10 (196)
x >0,¥i=15 (197)
v, 20,7v =614 (198)
oy <a (199)
Bis = By (200)

Thus, mathematical models (152)—(200) have been ob-
tained, describing a multi-criteria nonlinear vector optimization
problem for a complex for commercial ethylene production
under conditions of incomplete information. The solution to
this problem can be obtained using known methods of vector
optimization. Let us consider the solution of a crisp analog of
the complex optimization problem using vector optimization
methods. As shown earlier, the optimal control problem for
the studied complex is reduced to a nonlinear multi-criteria
problem. A distinguishing feature of this class of optimiza-
tion problem is that quality of the solution is evaluated based
on multiple criteria y,, ,, ..., ,,, forming a vector criterion
=1, Y2 ---» Vi), Which is used to determine optimality con-
ditions. In this case, the optimal solution x° is defined by two
conditions: 1) the solution must be feasible, that is, belong
to the set of admissible solutions X; 2) the solution must be
optimal, that is, it must optimize the efficiency vector y while
considering the priority of the criteria.

Decision-making problems are described by the following
optimization models:

X0 = £ opt (y(x),2)]
xeX

Or, in the case of non-uniqueness of the optimal solu-
tion—when the optimal subset of solutions X is chosen as
optimal—the model is written as:

X0 =% = U fTopt (y(0). 2]
xeX

xeX
where A = (4, 45, ..., 4,,) 1S a priority vector that characterizes
the relative importance of local criteria in the optimization
problem; £ ! is the inverse mapping y — x =£"'(»).
Problem (152)—(200) is a one-vector, finite-dimensional,

single-scale convex problem with prioritized local criteria.
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Table 3. Results of the optimal control problem for the ethylene production complex

Tabela 3. Wyniki problemu optymalnego sterowania dla kompleksu produkc;ji etylenu

Problem solution
Parameters with a crisp by the hard flexible priority flexible priority
objective function priority method ',“e”'fd ‘,"ethfd
weight = 0.2 weight = 0.5

Temperature of the top K-10 [°C] -94 -95 -93 -93
Temperature of the bottom K-10 [°C] 10 8 7 8
Propylene content in distillate K-11 [%)] 0.441 0.289 0.395 0.280
Temperature of the top K-11 [°C] -12 -14 -13 —-14
Temperature of the bottom K-11 [°C] 71 71 74 72
Er‘;rgzé‘: I‘g%&g‘ydmcarbons in the bottom 72,563 73.855 74.863 73.821
Temperature at the outlet of the R-2 reactor [°C] 104 104 105 100
Ethylene content in distillate K-11 [%] 83.868 84.455 81.313 77.226
El}llirgﬁge E_ ;crfél;;l;r;e ratio in the EEF at the 3.408 3409 3.658 )
Ethylene content in distillate K-10 [%] 0.614 0.233 0.101 0.295
Ethylene content at the outlet of P-2 [%] 77.435 79.548 77.935 80.3
Temperature of the top K-12,13 [°C] =30 -28 =30 -30
Temperature of the bottom K-12,13 [°C] -6 -6 -6 -6
T ot s o

The results of solving this problem are presented in Table 3.
The problem was solved using both hard and flexible priority
methods, with two different weights.

Furthermore, the solution of this fuzzy problem was com-
pared with the solution of a fuzzy problem that uses a crisp
objective function. The hard priority principle gives good
results when searching not for a single exact optimum, but for
a certain range of solutions close to the optimum—a quasi-
optimal set X ¥

An advantage of the hard priority method is that it does
not require the specification of quantitative characteristics for
the criteria priority 1 or a, but only the order of the criteria in
a priority series (a = (ay, 0y, ..., 0,,) is a weight vector, each
component of which has the meaning of a weight coefficient
determining the relative superiority of the j-th criterion over
the rest).

The application of the flexible priority method requires
specification of quantitative characteristics of priority A or
o, allowing only some preference to be given to the more
important criteria when selecting a solution. In practice, this
results in evaluating the solution quality using a weighted
vector criterion — a vector pair (y,4) — and modifying the
optimality principle to transition from opt y to opt(y, o).
This correction of the optimality principle may be implemented
in various ways. In the case of problem (152)—(200), the
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correction is based on the principle of fair concession with
priority, in this case:
opt(y,a) = max Zaj logy;
yer e

An important advantage of the flexible priority method
is that it enables, within reasonable limits, the assignment of
preference to more important criteria, taking into account their
relative importance.

As demonstrated in the table of results pertaining to the
solution of the optimal control problem of the technologi-
cal complex for ethylene production using the methods of
vector optimization, it is possible to achieve a decrease of
the propylene content (concentration) in the distillate of the
deethanization rectification column, which makes it possible
to direct the amount of Y C; hydrocarbons to the technologi-
cal block for the production of commercial propylene and
propane. In addition, a slight reduction in the temperatures
of the rectification columns is achieved, leading to improved
product purity and reduced thermal energy consumption for
the process as a whole. Furthermore, based on the reduction
in the ethylene content in the distillate of the demethanization
column, it becomes possible to redirect the > C, hydrocarbons
for further processing, resulting in an increase in the purified
ethylene content in the ethane-ethylene fraction at the outlet
of the acetylene hydrogenation reactor.



Results

A physically justified statement of the optimization prob-
lem for the technological complex for commercial ethylene
production has been developed. It has been demonstrated
that the optimal control problem for the studied complex is
reduced to a mathematical programming problem with fuzzy
parameters. A deterministic analog of a multidimensional
nonlinear optimization problem with a fuzzy objective func-
tion and fuzzy constraints has been constructed. As a result,
a multi-criteria vector optimization problem for control of
a commercial ethylene production complex has been obtained.
The applicability of various multi-criteria optimization methods
to the solution of the obtained crisp analog of the fuzzy control
optimization problem for the technological complex for com-
mercial ethylene production has been studied. As shown by
the obtained results, solving the fuzzy problem using any of
the multi-criteria optimization methods yields an increase in
ethylene output compared to the solution of a fuzzy problem
with a crisp objective function, while also ensuring the physical
validity of the solution.
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