
359

NAFTA-GAZ

Przegląd wiadomości / News reviewNafta-Gaz 2025, no. 5, pp. 359–369, DOI: 10.18668/NG.2025.05.07

Modeling, algorithmization, and solution of the optimal control problem 
for the ethylene production complex under conditions  
of incomplete information
Modelowanie, algorytmizacja i rozwiązanie problemu sterowania optymalnego  
dla kompleksu produkcyjnego etylenu w warunkach niepełnych informacji

Elchin Melikov

Azerbaijan State Oil and Industry University

ABSTRACT: As a result of a comprehensive study of the technological units in the multidimensional and multi-connected gas frac-
tionation subsystem of the EP-300 large-scale ethylene and ethane production complex, a generalized formulation of the optimiza-
tion problem for a sequentially connected block of technological apparatus – including elements with fuzzy described states – was 
developed. Specifically, a mathematical formulation of the optimization problem for a technological complex for commercial ethylene 
production under conditions of incomplete information was formulated. Statistical models were constructed that link output flows with 
the quality indicators of the input flow, loads, and operating parameters. The necessity of constructing fuzzy regression models for the 
selective hydrogenation reactor of acetylene in an ethane-ethylene fraction and for the ethylene fractionation column is demonstrated 
due to the lack of information for their identification. For this purpose, the fuzzy regression method, the E  – D-estimation method, is 
proposed. As a result, a multidimensional nonlinear mathematical programming problem with a fuzzy objective function and some fuzzy 
constraints is obtained. To solve this problem, a transition to its clear deterministic analog is performed. For this purpose, the present 
article applies a universal method for solving mathematical programming problems with fuzzy parameters – namely, the method of 
(L-R)-representation of fuzzy numbers. The resulting multi-criteria nonlinear vector optimization problem concerning the operation of 
the technological complex for commercial ethylene production under conditions of incomplete information is solved using established 
vector optimization methods, particularly the methods of rigid and flexible priorities with two different weights. It is shown that solv-
ing the fuzzy problem using any of the proposed multi-criteria optimization methods yields in the production of commercial ethylene 
compared to solving the corresponding problem with a clear objective function.

Key words: technological complex, commercial ethylene, optimal control, hydrogenation reactor, vector optimization, mathematical  
model.

STRESZCZENIE: W wyniku kompleksowego badania jednostek technologicznych w wielowymiarowym i wieloetapowym pod-
systemie frakcjonowania gazu w wielkoskalowym kompleksie produkcji etylenu i etanu EP-300, opracowano uogólnione sfor-
mułowanie problemu optymalizacji dla sekwencyjnie połączonego bloku aparatury technologicznej – w tym elementów o stanach 
opisanych w sposób nieprecyzyjny. W szczególności sformułowano matematyczny opis problemu optymalizacji dla komplek-
su technologicznego produkującego komercyjny etylen w warunkach niepełnych informacji. Skonstruowano modele staty-
styczne, które łączą strumienie wyjściowe ze wskaźnikami jakościowymi strumienia wejściowego, obciążeniami i parametrami 
eksploatacyjnymi. Wykazano konieczność skonstruowania modeli regresji rozmytej dla reaktora selektywnego uwodornienia ace-
tylenu we frakcji etanowo-etylenowej oraz dla kolumny frakcjonowania etylenu ze względu na brak informacji do ich identyfikacji. 
W tym celu zaproponowano metodę regresji rozmytej, a konkretnie metodę estymacji E  – D. W rezultacie otrzymano wielowy-
miarowy, nieliniowy problem programowania matematycznego z rozmytą funkcją celu i pewnymi rozmytymi ograniczeniami.  
W celu jego rozwiązania dokonano przejścia do jednoznacznego, deterministycznego odpowiednika. W tym celu w niniejszym artykule 
zastosowano uniwersalną metodę rozwiązywania problemów programowania matematycznego z parametrami rozmytymi, a mianowicie 
metodę reprezentacji (L-R) liczb rozmytych. Ostatecznie wielokryterialny problem wektorowej optymalizacji nieliniowej dotyczący 
funkcjonowania kompleksu technologicznego produkującego komercyjny etylen w warunkach niepełnej informacji rozwiązano przy 
użyciu znanych metod optymalizacji wektorowej, w szczególności metod sztywnych i elastycznych priorytetów z zastosowaniem 
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dwóch różnych wag. Wykazano, że rozwiązanie problemu rozmytego przy użyciu dowolnej z proponowanych metod optymalizacji 
wielokryterialnej prowadzi do poprawy wyników produkcji etylenu w porównaniu z rozwiązaniem odpowiadającego mu problemu 
z jednoznaczną funkcją celu.

Słowa kluczowe: kompleks technologiczny, etylen komercyjny, sterowanie optymalne, reaktor uwodornienia, optymalizacja wektorowa, 
model matematyczny.

Introduction

Numerous scientific publications have addressed the opti-
mization and modeling of technological apparatus for ethylene 
production. However, these works do not consider the control 
problem of ethylene production as a whole, and there are 
virtually no studies focused on the optimization of control for 
the technological complex for commercial ethylene produc-
tion, upon which the purity and quality of the target product 
depend. To a significant extent, the quality of commercial 
ethylene depends on the choice of operating parameters for the 
hydrogenation reactor of acetylene compounds. The problem 
of real-time control of the hydrogenation reactor remains in-
sufficiently developed, and there are no effective methods or 
models that account for the operational characteristics of this 
catalytic apparatus. The absence of specialized models and 
corresponding solution methods has necessitated the devel-
opment of the approaches outlined in this article. Until now, 
optimization of technological processes in the low-tempera-
ture rectification apparatus used for ethylene production has 
been based on traditional models employing the equation of 
component-by-component material and heat balances, phase 
equilibrium, kinetic mass transfer dependencies of component 
installations, and associated optimization methods such as 
unconstrained optimization methods, linear programming, and 
dynamic programming. In most studies, process control within 
this subsystem has been reduced to solving the optimization 
problem for the static operating modes of the technological ap-
paratus, with mathematical models represented as deterministic 
functions of operating parameters (Gubitoso, 2007; Sabri, 2014; 
Pisarenko et al., 2016; Samedov et al., 2019; Tovbin, 2023).

The technological complex for commercial ethylene produc-
tion of the EP-300 plant, comprising sequentially connected 
apparatus, is a complex control object with incompletely defined 
states due to a lack of information in assessing the physico-
chemical characteristics of the acetylene hydrogenation reac-
tor. This is associated with the difficulty of determining the 
temperature profile of the reaction process and the proportion 
of the catalyst’s active surface without direct control, as well 
as the inability to accurately assess the states of the selec-
tive hydrogenation process (Ibrahimov et al., 1991; Melikov, 
2018, 2020; Melikov et al., 2023; Merdanov and Melikov, 
2023; Melikov and Ibrahimli, 2024; Sardarova et al., 2024). 

Therefore, due to the complex nature of the distribution of 
elementary reaction rates inside the reactor, the difficulty of 
monitoring raw material transformation within the apparatus, 
and frequent variations in raw material quality, the mathemati-
cal apparatus of fuzzy set theory is used to identify the model 
of the hydrogenation reactor when solving the optimal control 
problem of the complex for commercial ethylene production. 
Let us formulate a generalized statement of the optimal control 
problem for a complex for commercial ethylene production. 
As the optimization criterion, we will select the value of the 
target product output:
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where: yv
j  is the fuzzy variable representing the quantity of 

the v-th commercial product of the j-th installation, cv
j is the 

price of the v-th commercial product of the j-th installation. 
Equations describing the deterministic states of the ap-

paratus link the loads and operating parameters to the output 
flows of the installations:
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where: xi
j  is the consumption (quality) of i-th raw material in 

the j-th apparatus, and ul
j  is the l-th control action of the j-th 

installation.
Models that account for the fuzzy nature of state assess-

ments in reaction apparatus are described by equations with 
fuzzy parameters:
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where: ul t
j
, −1 is the fuzzy variable of the l-th control of the j-th 

reactor at time t – 1.
Since the output flows of the m-th installation are fuzzy 

numbers, the equations of the subsequent m N+1,  apparatus 
are also fuzzy:
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where: xi
j is the fuzzy variable of the i-th input flow of the 

j-th installation.
Restrictions on the admissible values of operating 

parameters:
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Equations that characterize the interdependencies of mate-
rial flows for different interconnected apparatus are written in 
the form:
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where: Hv
kj is a matrix characterizing the interconnections be-

tween the outputs of the k-th and inputs of the j-th production 
units. According to the regulations, additional constraints are 
introduced to meet the quality requirements for output streams:
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where: yg
j  and yg

j are the lower and upper constraints for the 
g-th output stream of the j-th installation.

Load range constraints:

	 j j j
d d dx x x≤ ≤ 		  (8)

where: xd
j and xd

j  are the lower and upper limits on the d-th 
load of the j-th installation.

The quantitative values of the input and output flows of 
the apparatuses are subject to non-negativity requirements:
	 x ij N Mi

j ≥ =∀ =0 1 1, ,, , 		  (9)
	 y vj N Vv

j ≥ =∀ =0 1 1, ,, , 		  (10)
Thus, the optimal control problem of the studied complex 

(1)–(10), including a reaction apparatus operating under con-
ditions of incomplete information, is formulated, where the 
models of the installations are described by (2)–(4), the ranges 
of the permissible control values ul

j are (5), the equations for 
the connection of the apparatuses are (6), the requirements 
for the values of the loads are (8), (9), the sets of states yv

j 
are (7), (10). 

Mathematical statement  
of the optimal control problem

The optimal control problem for the complex for com-
mercial ethylene production as a whole is written in the fol-
lowing form:
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The optimization problem for the apparatus chain (11), 
including an element with fuzzy described states, applies to the 
complex for commercial ethylene production. This complex 
is one of the main blocks of the low-temperature rectification 
unit and consists of rectification columns (demethanization, 
deethanization, and ethylene fractionation) as well as a reactor 
for acetylene hydrogenation in the ethane-ethylene fraction 
(EEF). The reactor is a multidimensional and multi-connected 
apparatus with complex internal and external connections. Its 
operation is managed under conditions of information deficit 
due to limited understanding of the relationships between 
operating parameters and loads that vary over a wide range, 
the inability to control the temperature distribution within the 
reactor, and the degree catalyst deactivation. Consequently, 
there is a need to incorporate the informal experience of process 
personnel into reactor management. In addition, the variability 
of the magnitude and quality of the input load requires either 
continuous adaptation of models or the use of a mathematical 
framework capable of constructing models that remain valid 
under wide-ranging disturbance conditions. Therefore, optimi-
zation of the studied complex is reduced to solving the optimal 
control problem under conditions of incomplete information. 
The yield of commercial ethylene is considered as a criterion 
for the optimization problem of the complex:

	 � � �F C y= →18 18 max 	 (12)

where: y18 is a yield of commercial ethylene, and C18 is its 
unit price.

The mathematical dependencies necessary to describe the 
installations of the complex represent a system of constraints 
of the following form:
	 y6 = f1 (x1, x2, x3, x4, x5, u1, u2)	 (13)
	 y7 = f2 (x1, x2, x3, x4, x5, u1, u2)	 (14)
	 y8 = f3 (x1, x2, x3, x4, x5, u1, u2)	 (15)
	 y9 = f4 (x1, x2, x3, x4, x5, u1, u2)	 (16)
	 y10 = f5 (x8, x9, u3, u4)		  (17)
	 y11 = 100 – y12		  (18)
	 y12 = f6 (x8, x9, u3, u4)		  (19)
	 y13 = f7 (x9, u3, u4)		  (20)
	 y14 = f8 (x8, x9, u3, u4)		  (21)
	 
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where: x1, x2, x3, x4 are the amounts of pyrogas entering the 
K-10 demethanization column from the compression subsys-
tem, x5 is the methane content in the feed to the K-10 column,  
y6 and y7 are, respectively, the ethylene content in methane and 
the methane flow rate from the top of column K-10, y8 and 
x8 are the amounts of the hydrocarbon mixture c2 and higher, 
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respectively, in the bottom of column K-10 and the feed to the 
deethanization column K-11, y9 and x9 are the content of the 
sum of c2 hydrocarbons, respectively, in the bottom of column 
K-10 and the feed of column K-11, y10 and y11 are, respectively, 
the amount of EEF and the ethylene content in the top product 
of column K-11, x10 and x11 are, respectively, the flow rate of 
EEF to reactor R-2 and the ethylene content in the EEF, y12 is 
the propylene content in the distillate of column  K-11, y13 is the 
flow rate of mixture c3 and higher from the bottom of column 
K-11, y14 is the content of ethylene and ethane in the bottom 
of column K–11, y17 is a fuzzy variable describing the flow 
rate of EEF from reactor R-2, y15 and y16 are fuzzy variables 
describing the ethylene and acetylene content, respectively, in 
the EEF at the reactor outlet, x16 and x17 are fuzzy variables 
describing the acetylene content and the amount of EEF in 
the feed to columns K-12,13, y18 and y19 are fuzzy variables 
describing the amounts of ethylene and ethane, respectively, at 
the outlet of the K-12,13 ethylene fractionation column, u1 and 
u2, u3 and u4, u7 and u8 are the temperatures of the top and the 
bottom of columns K-10, K-11, and K-12,13 respectively, u t5 1, −  
and u t6 1, −  are fuzzy variables describing the reactor temperature 
and the hydrogen-to-acetylene ratio in the EEF at time t – 1.

Conditions of material balance and equations of technologi-
cal apparatus connection:
	 y7 + y8 ≤ ∑ =i ix1

4 		  (26)
	 y13 + y10 ≤ x8		  (27)
	   y y x18 19 17+ ≤ 		  (28)
	 x8 = y8		  (29)
	 x9 = y9		  (30)
	 x10 = y10		  (31)
	  x y16 16= 		  (32)
	  x y17 17= 		  (33)

Ranges of change in the qualitative and quantitative char-
acteristics of the output flows of the installations, as well as 
the requirements for non-negativity of the flow values for the 
apparatus:
	 6 6 6y y y≤ ≤ 		  (34)
	 13 13 13y y y≤ ≤ 		  (35)
	 15 15 15y y y≤ ≤   		  (36)
	 16 16 16y y y≤ ≤   		  (37)
	 x ii ≥ ∀ =0 1 5, . 		  (38)
	 y vv ≥ ∀ =0 6 14, . 		  (39)
	


y vv ≥ ∀ =0 15 19, . 		  (40)
Intervals of control actions change:

	 1 1 1u u u≤ ≤ 		  (41)
	 2 2 2u u u≤ ≤ 		  (42)
	 3 3 3u u u≤ ≤ 		  (43)
	 4 4 4u u u≤ ≤ 		  (44)
	 5, 1 5, 1 5, 1t t tu u u− − −≤ ≤   		  (45)
	 6, 1 6, 1 6, 1t t tu u u− − −≤ ≤   		  (46)

	 7 7 7u u u≤ ≤ 		  (47)
	 8 8 8u u u≤ ≤ 		  (48)

The optimal control problem of the complex is finally 
written in the form:
	 � � �F C y= →18 18 max 	
	 y6 = f1 (x1, x2, x3, x4, x5, u1, u2)
	 y7 = f2 (x1, x2, x3, x4, x5, u1, u2)
	 y8 = f3 (x1, x2, x3, x4, x5, u1, u2)
	 y9 = f4 (x1, x2, x3, x4, x5, u1, u2)
	 y10 = f5 (x8, x9, u3, u4)
	 y11 = 100 – y12

	 y12 = f6 (x8, x9, u3, u4)
	 y13 = f7 (x8, x9, u3, u4)
	 y14 = f8 (x_8,x_9,u_3,u_4)
	 


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	 
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	 
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	 y y xi i7 8 1
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	   y y x18 19 17+ ≤
	 x8 = y8

	 x9 = y9		   (49)
	 x10 = y10

	  x y16 16=
	  x y17 17=
	 6 6 6y y y≤ ≤
	 13 13 13y y y≤ ≤
	 15 15 15y y y≤ ≤  

	 16 16 16y y y≤ ≤  

	 x ii ≥ ∀ =0 1 5, .
	 y vv ≥ ∀ =0 6 14, .
	


y vv ≥ ∀ =0 15 19, .
	 1 1 1u u u≤ ≤
	 2 2 2u u u≤ ≤
	 3 3 3u u u≤ ≤
	 4 4 4u u u≤ ≤
	 5, 1 5, 1 5, 1t t tu u u− − −≤ ≤  

	 6, 1 6, 1 6, 1t t tu u u− − −≤ ≤  

	 7 7 7u u u≤ ≤
	 8 8 8u u u≤ ≤

The resulting problem is a nonlinear optimization problem 
with fuzzy parameters. 

Modeling and algorithmization  
of the optimal control problem

Let us proceed to model the apparatuses and algorithmize 
the solution to the formulated problem. During modeling, 
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each rectification column is considered as an object whose 
inputs are the feed flow rate, feed quality, and top and bottom 
temperatures. The outputs of the object are the quantitative and 
qualitative characteristics of the rectification column’s output 
stream. The columns are of the same type. The column top 
and bottom temperatures are the controls, and the flow rate 
and feed analysis are the controlled disturbances. Linear and 
nonlinear approximations were used for model identification. 
The obtained results of column model identification are sum 
marized in Table 1.

Finally, the rectification column models have the follow-
ing form:
1.	 demethanization column K-10:

–– 	nonlinear model for the ethylene content in methane at 
the top of the column:
y6 = –0.04323x1 – 0.00032x1

2 – 0.10001x2 + 0.00159x2
2 +  

+ 0.04929x3 + 0.0022x3
2 – 0.00421 4 + 0.00158x4

2 –  
– 0.01668x5 + 0.00062x5

2 + 0.31962u1 + 0.00144u1
2 – 

0.31264u2 + 0.02872u2
2 + 20.52124

–– 	linear model for the methane flow at the top of the 
column:
y7 = 0.14469x1 – 0.0156x2 + 0.87061x3 – 0.21026x4 –  
– 0.09507x5 – 0.00067u1 – 0.6129u2 + 10.82499

–– 	linear model for the flow rate mixture of hydrocarbons 
c2 and higher from the column bottom:
y8 = 0.90739x1 + 0.79843x2 + 0.05703x3 + 0.20882x4 +  
+ 0.03504x5 – 0.01682u1 + 0.13228u2 + 17.54576

–– 	linear model for the content of the c2-hydrocarbons sum 
in the bottom product:
y9 = –0.27294x1 + 0.08091x2 + 1.18648x3 + 0.17484x4 +  
+ 0.18684x5 – 0.10068u1 + 0.73561u2 + 71.56131

2.	 	deethanization column K-11:
–– 	linear model for the EEF flow rate at the top of the 

column:
y10 = 0.79683x8 + 0.05245x9 – 0.10091u3 – 0.92595u4 +  
+ 48.57524

–– 	linear model for the propylene content in the column 
distillate:
y12 = 0.01452x8 + 0.03425x9 + 0.07563u3 – 0.57923u4 +  
+ 1.34842

–– 	linear model for the flow rate of a hydrocarbons c3 and 
higher mixture from the column bottom:
y13 = 0.27284x8 – 0.03749x9 + 0.66626u4 – 37.65547

–– 	linear model for ethylene and ethane content in the 
column bottom product:
y14 = –0.03145x8 + 0.02557x9 – 0.08649u3 + 0.05606u4 –  
– 6.9556.

Due to the insufficient equipment with measuring instru-
ments, which prevents full control over the physical and chemi-
cal transformations of raw materials in the reactor, difficulty 

in assessing the catalyst state and the temperature profile of 
the reaction zone, as well as the complexity and number and 
relationships between the reactor’s state variables, constructing 
a mathematical description for this apparatus using traditional 
methods and models is challenging. This raises the problem 
of constructing a reactor model using the knowledge of pro-
cess personnel, formalized using the apparatus of fuzzy set 
theory. In this case, the reactor outputs are described by fuzzy 
variables, which in turn leads to the fuzzy description of the 
ethylene fractionation column. When constructing models 
for the optimal control of the ethylene production block, the 
dependencies describing the reactor and the ethylene fractiona-
tion column should be based on data collected during a passive 
experiment. The traditional method for modeling is regression 
analysis. However, when processes inputs and outputs are fuzzy 
variables connected by fuzzy relationships, traditional statisti-
cal inference is inapplicable. This necessitates a method that 
enables modeling the dependencies between several variables 
while accounting for their fuzzy nature. This method is fuzzy 
regression (Tanaka et al., 1982). 

The fuzzy regression method employed was the  
Ẽ–̃ D-estimation method (Wang and Li, 1990), briefly described 
below. Let X0, X1, …, Xn be fuzzy variables taking values  
in the set of all fuzzy numbers F(R). Let’s assume a linear 
relationship:
	 X0 = β1X1 +...+ βn–1Xn–1 + βn Xn	 (50)
where βi, i n=1,  are unknown real coefficients, and
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where the membership function is also a fuzzy set. Let us 
consider fuzzy sets whose membership function is given in 
parametric form:
	 µ π

X
x a bN a b e= ( ) = − −, ( )2 	 (51)

when: b = 0, N a
if
if
x a
x a

( , )
,
,

0
1
0

=




=
≠

The criterion for solving the problem of estimating the 
real coefficients β1, β2, …, βn is the condition for minimizing 
the entropy integral deviation of the estimated values of the 
dependent variable from the entropy of its observed values:

E x E x min E x E xj jj
m

j jj
m

n

( ) ( ) ( ) ( )
,...,

0 01 0 01
1

∗ ∗∗
=

∗
=− = −∑ ∑

β β
	 (52)

provided that:
	 Λ j

m
j jD x x=

∗∗ ≥1 0 0( ) h,  	 (53)
where: D is the degree of closeness between fuzzy numbers, 

and h is a given standard of closeness (h ∈ (0,1]), 
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selected in accordance with the requirements of the 
problem: 



X x j mj i
m

i ij0 1 1∗
=

∗ ∗= ∑ =β , , .
The formulated problem (52)–(53) can be transformed. It 

is known that:

	

∑ − =

= ∑ −∑ ⋅

=
∗

= =

∗
j
m

j j

j
m

j j
m

i ij n

E x E x

b b J
1 0 0

1 0 1 1

( ) ( )

( , , )β β β� � 	 (54)
and that the degree of proximity:

   D x xj j
a a
b b

aj i
n

i ij

j i
n

i ij

j( ),0 0
0 1

0 1

0∗ ∗ −∑
+∑

−∑
= 









=

=

µ
β
β

if ii
n

i ij

j i
n

i ij

a
b b a a=

=+∑
∈ −1

0 1

β
β

( , ) 	(55)

otherwise: D x xj j( ),0 0 0∗ ∗ =
Using the last expression, the problem (52)–(53) is written as:

	 min
β β

β β
1

1
, ,

( , , )




n

J n 		  (56)

under the following conditions:

	
∑ +∑ ≤ −
=
= =

− −
j
n

i ij j
n

i ij j ja b h a h b
j m

1 1
1

0
1

0
1
β β µ µ( ) ( ) ,
,..., 	 (57)

	 −∑ + ∑ ≤ −= =j
n

i ij j
n

i ij j jab a a ab1 1 0 0β β 	 (58)

	 ∑ +∑ ≥ −= =j
n

i ij j
n

i ij j jab a a ab1 1 0 0β β 	 (59)

Problem (56)–(59) can be transformed into a series of linear 
programming problems. As a result, the estimates β1

*,…, βn
* of 

the unknown real coefficients are determined.
When constructing the models, the reactor is considered as 

an object with the following inputs: the flow rate of the EEF  
(F 

in
EEF), the ethylene content in the EEF (Q 

in
C2H4), the hydrogen–

to-acetylene ratio in the EEF (Q 
in
H2)/(Q inC2H2), and the tempera-

ture in the reactor (T 
out
EEF). The outputs are the ethylene conent  

(Q 
out
C2H4) and acetylene content in the EEF (Q 

out
C2H2). The control  

actions are hydrogen-to-acetylene ratio in the EEF and the 
EEF temperature. The flow rate of the EEF and its ethylene 
content are controlled disturbances. In this case, F 

in
ЭЭФ and  

Q 
in
C2H4 are crisp variables. However, the variables (Q inH2)/(Q inC2H2)  

and T out
ЭЭФ are fuzzy. It is clear that the dependent variables of 

the models are Q 
out
C2H and Q 

out
C2H4.

The parametric assignment of terms in accordance with 
(51) for constructing the reactor regression model is provided 
in Table 1. The structural diagram of the reactor as a modeling 
object is presented in Figure 1.

A linear model of the ethylene content in the EEF at the 
reactor outlet was obtained:

	


 

y x x
u u

15 10 11

5 6

0 42177 0 8513 1 14775
2 62864 16 1368

= − ⊕ ⊕. . .
. . Θ Θ

and a linear model of the acetylene content in the EEF at the 
reactor outlet:

	


 

y
u u

x x16 9 10

5 6

0 77469
6 96143 95 1152

1 54689 0 08771= −
⊕ ⊕
.
. .

. .Θ Θ
  33

When modeling, the ethylene fractionation column is con-
sidered as an object whose inputs are: the flow rate of purified 

EEF coming from the acetylene hydrogenation reactor (F 
et
EEF),  

the acetylene content in the purified EEF (Q 
et
C2H2), as well 

as the top temperature (T et
top) and bottom temperature (T et

cub) 
of the column. The outputs of the object are the amounts of 
commercial ethylene (F out

C2H4) and ethane (F out
C2H6) produced 

in the ethylene fractionation column. The control actions are 
the top and bottom temperatures of the column. The purified 
EEF consumption and the acetylene micro-impurity content are 
considered controlled disturbances. The independent variables 
of the models T et

top and T et
cub are crisp. However, as shown above 

in the modeling of the reactor, the variables F 
et
EEF and Q 

et
C2H2 

are fuzzy. Therefore, the dependent variables of the models  
F out

C2H4 and F out
C2H6 are also fuzzy.

The parametric assignment of terms for the ethylene frac-
tionation column is provided in Table 2. The structural diagram 
of the ethylene fractionation column as a modeling object is 
shown in Figure 2.

A linear model for the ethane consumption from the column 
bottom has been constructed:
	  y x u u19 17 7 80 19606 4 22293 6 80709 85 91112= ⊕. . . .Θ Θ
and a nonlinear model for the amount of commercial ethylene 
obtained in the column:

	




  y
x

x x x18 17 17
2

17

16

14 98467 0 02088 0 00789
25 7790

= . . .
.
  



Θ Θ
Θ 77 0 34358

0 14156 0 12905 904 9
7 17 7

17 8 16 8

u x u
x u x u

⊕ ⊕.
. . .

 

   



 Θ Θ 11

Figure 1. Structural diagram of the acetylene hydrogenation 
reactor as a modeling object
Rysunek 1. Schemat strukturalny reaktora uwodorniania acetylenu 
jako obiektu modelowania

Table 1. Parameters of mathematical models for acetylene  
hydrogenation reactor
Tabela 1. Parametry modeli matematycznych dla reaktora  
uwodorniania acetylenu

Variable 
name

Terms

Acetylene hydrogenation reactor
Q 

in
H2/Q 

in
C2H2 T out

EEF

a b a b

Low 2.950 8.703 117 0.986

Medium 4.050 0.256 124 4.098

High 4.500 0.205 133 5.116
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Table 2. Parameters of ethylene fractionation column models
Tabela 2. Parametry modeli kolumn do frakcjonowania etylenu

Variable 
name

Terms

Ethylene fractionation column
T out

EEF Q 
et
C2H2

a b a b

Low 36 4.098 1·10–4 1.0241·10–4

Medium 43 0.986 5·10–4 1.7731·10–4

High 52 4.098 1·10–4 2.0471·10–4

Figure 1. Structural diagram of the ethylene fractionation column
Rysunek 1. Schemat strukturalny kolumny do frakcjonowania 
etylenu

Thus, a number of models have been constructed that de-
scribe both deterministic states of the apparatus (demetha-
nization and deethanization columns) and fuzzy states of the 
apparatus (acetylene hydrogenation reactor and ethylene frac-
tionation column) under conditions of incomplete informa-
tion. Consequently, the optimization problem for the complex 
constitutes a mathematical programming problem with fuzzy 
parameters. Let us consider the algorithmization of the optimal 
control problem for the complex formulated as a mathematical 
programming problem with fuzzy parameters. This is a problem 
in which some of the constraints are fuzzy due to the fuzziness 
of the controls and the disturbances in the apparatus described 
by these constraints. To solve this problem, it is necessary to 
move on to a crisp analog for the given constraints. To achieve 
this, the method of solving mathematical programming prob-
lem with fuzzy parameters, the (L-R)-representation of fuzzy 
numbers, is used below. Then the statement for the optimal 
control problem of the complex using extended arithmetic 
operations is written as:

      � � �F C y= →18 18 max 		  (60)

	

y a x a x a x a x a x a x
a x a x a

6 11 1 12 1
2

13 2 14 2
2

15 3 16 3
2

17 4 18 4
2

1

= + + + + + +

+ + + 99 5 110 5
2

11 1 12 1
2

13 2 14 2
2

10

x a x b u b u

b u b u a

+ + + +

+ + +
,

	 (61)

	
y a x a x a x a x a x b u

b u a
7 21 1 22 2 23 3 24 4 25 5 21 1

22 2 20

= + + + + + +
+ + 	 (62)

	
y a x a x a x a x a x b u

b u a
8 31 1 32 2 33 3 34 4 35 5 31 1

32 2 30

= + + + + + +
+ + 	 (63)

	
y a x a x a x a x a x b u

b u a
9 41 1 42 2 43 3 44 4 45 5 41 1

42 2 40

= + + + + + +
+ + 	 (64)

	 y a x a x b u b u a10 51 8 52 9 51 3 52 4 50= + + + + 	 (65)
	 y a x a x b u b u a11 61 8 62 9 61 3 62 4 60= + + + + 	 (66)
	 y y12 11100= − 		  (67)
	 y a x a x b u a13 71 8 72 9 71 3 70= + + + 	 (68)
	 y a x a x b u b u a14 81 8 82 9 81 3 82 4 80= + + + + 	 (69)
	  y a x a x b u b u a15 91 11 92 12 91 5 92 6 90= ⊕ ⊕ ⊕ ⊕  	 (70)

	
 y ua x a x b b

u a
16 10 1 11 10 2 12 10 1 5 10 2

6 10 0

= ⊕ ⊕ ⊕
⊕
. . . .

.



 	 (71)

	

  

 

y x x x
x x
a a a

b u b
18 11 1 17 11 2 11 3 17

16 11 1 17 7

17
2= ⊕ ⊕

⊕ ⊕
. . .

.

  

   111 2 17

8 11 3 8 16 11 4 7 11 0

.

. . .



 





x
xu b u b u a⊕ ⊕ ⊕ 	 (72)

	  y xa b u b u a19 12 1 17 12 1 7 12 2 8 12 0= ⊕ + +. . . . 	 (73)
	 ∑ − − ≥=i ix y y S1

4
7 8 1 		  (74)

	 y y x S10 13 8 2+ − ≤ 		  (75)
	 x Sy10 17 3− ≤ 		  (76)
	 x y10 17 0− ≥ 		  (77)
	   y y x18 19 17+ ≤ 		  (78)
	 6 6 6y y y≤ ≤ 		  (79)
	 14 14 14y y y≤ ≤   		  (80)
	 15 15 15y y y≤ ≤   		  (81)
	 16 16 16y y y≤ ≤   		  (82)
	 ,  1.4j j ju u u j≤ ≤ ∀ = 		  (83)
	 7 7 7u u u≤ ≤ 		  (84)
	 8 8 8u u u≤ ≤ 		  (85)
	 ,  8.11i vx y i v= ∀ = = 		  (86)
	 16 16x y=  		  (87)
	 17 17x y=  		  (88)
	 0,  1.5ix i≥ ∀ = 		  (89)
	 0,  7.13vy v≥ ∀ = 		  (90)

The constructed system (60)–(90) is formulated as a prob-
lem with fuzzy objective function and fuzzy constraints. The 
considered optimization problem for the acetylene hydrogena-
tion reactor is solved as a mathematical programming problem 
with fuzzy parameters. 

In the proposed approach to modeling the reactor state as-
sessment, fuzzy numbers of the (L-R) type (Dubois and Prade, 
1979) are used. The membership function of such numbers 
has the form:

	

 , 0

,
( )

0
A

a uL for u a
u

u aR for u a

α
α

µ
β

β

 −  ≤ >   = 
 − ≥ >   



where: L is the left representation, R is the right representation, 
a is the medium value of the fuzzy number, α, and β are the 
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right and left fuzziness coefficients. L and R are increasing 
functions on the interval [0, ∞). A fuzzy number of the (L-R) 
type is written as:
	 ( , , )LRA a α β=

Let us now transition from problem (60)–(90) to a system 
with crisp constraints and a crisp objective function. Let us 
write down the (L-R)-representation for the equations describ-
ing the output flows of the catalytic apparatus:

	

15 15 15

91 11 92 12 91 5 92 6 90

91 5 92 6 91 5 92 6

( , , )
( ,

, )

LR

LR

y
a x a x b u b u a

b b b b

α β

γ γ φ φ

=
= + + + +

+ + 	 (91)

	

16 16 16

10.1 11 10.2 12 10.1 5 10.2 6

10.0 10.1 5 10.2 6 10.1 5 10.2 6

( , , )
(

, , )

LR

LR

y
a x a x b u b u

a b b b b

α β

γ γ φ φ

=
= + + + +
+ + + 	 (92)

For the ethylene yield equation, the following (L-R)-
representation was obtained:

	

18 18 18
2

11.1 17 11.2 17 11.3 17 16 11.1 17 7

11.2 17 8 11.3 16 8 11.4 7 11.0 11.3 17 16

11.3 8 16 11.3 17 16 11.3 8 16

( , ,
(

,
, )

)LR

LR

y
a x a x a x x b x u

b x u b x u b u a a x
b u a x b u

α β

α
α β β

=

= + + +
+ + + +

+ +

+
+

	 (93)

Introducing the following notations:

	

F y

y
y

y
y

F

F

LR

LR

�
�
�

�
�

�
�
�

18

18

18

15 15 15

16 16 16

15

16

α α
β β

α β

α β

( , , )
( , , )

yy
y
y

y
y
y

LR

LR

15

15

16

15 15 15

15 15 15

16 16 16

�
�
�

�
�

( , , )
( , , )
( , , )

α β
α β
α β LLR

LR

LR

L

y
y
u

y
y
u

�
�
�

�
�
�

16

18

16 16 16

18 18 18

5 5 5 5

( , , )
( , , )
( , , )

α β
α β
γ φ RR

LRu u� �6 6 6 6( , , )γ φ

The constraints system (60)–(90) is the rewritten as follows:
	 ( , , ) ( , , )F y maxF F LR LRα β α β= →18 18 18 	 (94)

	

y a x a x a x a x a x
a x a x a x a

6 11 1 12 1
2

13 2 14 2
2

15 3

16 3
2

17 4 18 4
2

= + + + + +

+ + + + + 119 5 110 5
2

11 1 12 1
2

13 2 14 2
2

10

x a x
b u b u b u b u a

+ +

+ + + + +
,

	 (95)

	
y a x a x a x a x a x

b u b u a
7 21 1 22 2 23 3 24 4 25 5

21 1 22 2 20

= + + + + +
+ + + 	 (96)

	
y a x a x a x a x a x

b u b u a
8 31 1 32 2 33 3 34 4 35 5

31 1 32 2 30

= + + + + +
+ + + 	 (97)

	
y a x a x a x a x a x

b u b u a
9 41 1 42 2 43 3 44 4 45 5

41 1 42 2 40

= + + + + +
+ + + 	 (98)

	 y a x a x b u b u a10 51 8 52 9 51 3 52 4 50= + + + + 	 (99)
	 y a x a x b u b u a11 61 8 62 9 61 3 62 4 60= + + + + 	 (100)
	 y y12 11100= − 		  (101)

	 y a x a x b u a13 71 8 72 9 71 3 70= + + + 	 (102)
	 y a x a x b u b u a14 81 8 82 9 81 3 82 4 80= + + + + 	 (103)

	
( , , ) (

,
y a x a x b u
b u a b b

LR15 15 15 91 11 92 12 91 5

92 6 90 91 5 92

α β
γ γ
= + + +

+ + + 66 91 5 92 6, )b b LRφ φ+ 	
(104)

	
( , , ) (

,
. . .

. .

y a x a x b u
b u a

LR16 16 16 10 1 11 10 2 12 10 1 5

10 2 6 10 0

α β = + + +
+ + bb b b b LR10 1 5 10 2 6 10 1 5 10 2 6. . . ., )γ γ φ φ+ + 	

(105)

	

( , , ) ( . . .

.

y a x a x a x x
b x u

LR18 18 18 11 1 17 11 2 17
2

11 3 17 16

11 1 17

α β = + + +
+ 77 11 2 17 8 11 3 16 8 11 4 7

11 0 11 3 17 16 11 3

+ + +
+ +

+b x u b x u b u
a a x b u

. . .

. . ., α 88 16 11 3 17 16

11 3 8 16

α β
β

,
)

,

.

a x
b u LR

+
+ 	

(106)

	 y a x b u b u a19 12 1 17 12 1 7 12 2 8 12 0= + + +. . . . 	 (107)
	 ∑ − − ≥=i ix y y S1

4
7 8 1 		  (108)

	 y y x S10 13 8 2+ − ≤ 		  (109)
	 x y S10 17 3− ≤ 		  (110)
	 x y10 17 0− ≥ 		  (111)
	 y y x18 19 17+ ≤ 		  (112)
	 66 6y y y≤ ≤ 		  (113)
	 141 14 4yy y≤ ≤ 		  (114)
	 15 15 1515 1515

( , , ) ( , , )LR LRy yα β α β 	 (115)
	 15 15 15 15 15 15( , , ) ( , , )LR LRy yα β α β 	 (116)
	 16 16 1616 1616

( , , ) ( , , )LR LRy yα β α β 	 (117)
	 16 16 16 16 16 16( , , ) ( , , )LR LRy yα β α β 	 (118)
	 ,  1.4j jj uu u j≤ ≤ ∀ = 		  (119)
	 7 77u u u≤ ≤ 		  (120)
	 8 88u u u≤ ≤ 		  (121)
	 ,  7.10i vx y i v= ∀ = = 		  (122)
	 16 16 16 16 16 16( , , ) ( , , )LR LRx yα β α β= 	 (123)
	

17 17 17 17 17 17( , , ) ( , , )LR LRx yα β α β= 	 (124)
	 0,  1.5ix i≥ ∀ = 		  (125)
	 0,  6.14vy v≥ ∀ = 		  (126)
	 18 18 18 0 0( , , ) (0, , )LR LRy α β α β 	 (127)

For these functions L and R, define the numbers:
	 εR u R u R= = ={ }sup ( ) ( )0 1 	 (128)

	 δR s
u u R u lim R s= ≥ ={ }→∞

inf , ( ) ( )0 	 (129)

	 εL u L u L= = ={ }sup ( ) ( )0 1 	 (130)

	 δL s
u u L u lim L s= ≥ ={ }→∞

inf , ( ) ( )0 	 (131)

The constraints can be written as follows:
	 ε ββR y y( )

15 15 15 15
− ≤ − 		  (132)

	 δ ββR y y( )
15 15 15 15
− ≤ − 		  (133)

	 ε ααL y y( )15 15 15 15
− ≤ − 		  (134)

	 δ ααL y y( )15 15 15 15
− ≤ − 		  (135)

	 ε β βR y y( )15 15 15 15− ≤ − 		  (136)
	 δ β βR y y( )15 15 15 15− ≤ − 		  (137)
	 ε α αL y y( )15 15 15 15− ≤ − 		  (138)
	 δ α αL y y( )15 15 15 15− ≤ − 		  (139)
	 ε ββR y y( )

16 16 16 16
− ≤ − 		  (140)

	 δ ββR y y( )
16 16 16 16
− ≤ − 		  (141)

	 ε α αL y y( )16 16 16 16
− ≤ − 		  (142)
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	 δ α αL y y( )16 16 16 16
− ≤ − 		  (143)

	 ε β βR y y( )16 16 16 16− ≤ − 		  (144)
	 δ β βR y y( )16 16 16 16− ≤ − 		  (145)
	 ε ααL y y( )16 16 16 16− ≤ − 		  (146)
	 δ ααL y y( )16 16 16 16− ≤ − 		  (147)
	 ε β βR y( )0 18 18− ≤ 		  (148)
	 δ β βR y( )0 18 18− ≤ 		  (149)
	 ε α αL y( )18 0 18− ≤ 		  (150)
	 δ α αL y( )18 0 18− ≤ 		  (151)

Then the constraints system (94)–(127), taking into account 
the principle of constructing an analog for the fuzzy objective 
function extremum, can be represented as follows:
	 F = y18 → max		  (152)
	 αF = α18 → min		  (153)
	 βF = β18 → max		  (154)

	

y a x a x a x a x a x a x
a x a x a

6 11 1 12 1
2

13 2 14 2
2

15 3 16 3
2

17 4 18 4
2

1

= + + + + + +

+ + + 99 5 110 5
2

11 1 12 1
2

13 2 14 2
2

10

x a x b u b u
b u b u a

+ + + +

+ + +
,

	 (155)

	
y a x a x a x a x a x b u

b u a
7 21 1 22 2 23 3 24 4 25 5 21 1

22 2 20

= + + + + + +
+ + 	 (156)

	
y a x a x a x a x a x b u

b u a
8 31 1 32 2 33 3 34 4 35 5 31 1

32 2 30

= + + + + + +
+ + 	 (157)

	
y a x a x a x a x a x b u

b u a
9 41 1 42 2 43 3 44 4 45 5 41 1

42 2 40

= + + + + + +
+ + 	 (158)

	 y a x a x b u b u a10 51 8 52 9 51 3 52 4 50= + + + + 	 (159)
	 y a x a x b u b u a11 61 8 62 9 61 3 62 4 60= + + + + 	 (160)
	 y y12 11100= − 		  (161)
	 y a x a x b u a13 71 8 72 9 71 3 70= + + + 	 (162)
	 y a x a x b u b u a14 81 8 82 9 81 3 82 4 80= + + + + 	 (163)
	 y a x a x b u b u a15 91 11 92 12 91 5 92 6 90= + + + + 	 (164)
	 y a x a x b u b u a16 10 1 11 10 2 12 10 1 5 10 2 6 10 0= + + + +. . . . . 	 (165)

	
y a x a x a x x b x u

b x u
18 11 1 17 11 2 17

2
11 3 17 16 11 1 17 7

11 2 17 8

= + + + +
+ +

. . . .

. bb x u b u a11 3 16 8 11 4 7 11 0. . .+ + 	 (166)
	 y a x b u b u a19 12 1 17 12 1 7 12 2 8 12 0= + + +. . . . 	 (167)
	 α γ γ15 91 5 92 6= +b b 		  (168)
	 α γ γ16 10 1 5 10 2 6= +b b. . 		  (169)
	 α α α18 11 3 17 16 11 3 8 16= +a x b u, . 	 (170)
	 β φ φ15 91 5 92= +b b 		  (171)
	 β φ φ16 10 1 5 10 2 6= +b b, , 		  (172)
	 β α α β β18 11 3 17 16 11 3 8 16 11 3 17 16 11 3 8 16= + +a x b u a x a u. . . ., 	 (173)
	 ∑ − − ≥=i ix y y S1

4
7 8 1 		  (174)

	 y y x S10 13 8 2+ − ≤ 		  (175)
	 x y S10 17 3− ≤ 		  (176)
	 x y10 17 0− ≥ 		  (177)
	 y y x18 19 17+ ≤ 		  (178)
	 6 66

y y y≤ ≤ 		  (179)
	 141 14 4yy y≤ ≤ 		  (180)
	 y y

15 15 0− ≤ 		  (181)

	 y y15 15 0− ≤ 		  (182)
	 y y

16 16 0− ≤ 		  (183)
	 y y16 16 0− ≤ 		  (184)
	 β β

15 15 0− ≤ 		  (185)
	 β β15 15 0− ≤ 		  (186)
	 α α15 15 0− ≤ 		  (187)
	 α α15 15 0− ≤ 		  (188)
	 β β

16 16 0− ≤ 		  (189)
	 β β16 16 0− ≤ 		  (190)
	 α α16 16 0− ≤ 		  (191)
	 α α16 16 0− ≤ 		  (192)
	 u u u jj j j≤ ≤ ∀ =, .1 4 		  (193)
	

7 77u u u≤ ≤ 		  (194)
	

8 88u u u≤ ≤ 		  (195)
	 x y i vi v= ∀ = =, .7 10 		  (196)
	 x ii ≥ ∀ =0 1 5, . 		  (197)
	 y vv ≥ ∀ =0 6 14, . 		  (198)
	 α α18 0≤ 		  (199)
	 β β18 0≥ 		  (200)

Thus, mathematical models (152)–(200) have been ob-
tained, describing a multi-criteria nonlinear vector optimization 
problem for a complex for commercial ethylene production 
under conditions of incomplete information. The solution to 
this problem can be obtained using known methods of vector 
optimization. Let us consider the solution of a crisp analog of 
the complex optimization problem using vector optimization 
methods. As shown earlier, the optimal control problem for 
the studied complex is reduced to a nonlinear multi-criteria 
problem. A distinguishing feature of this class of optimiza-
tion problem is that quality of the solution is evaluated based 
on multiple criteria y1, y2, ..., ym, forming a vector criterion 
y = (y1, y2, ..., ym), which is used to determine optimality con-
ditions. In this case, the optimal solution x0 is defined by two 
conditions: 1) the solution must be feasible, that is, belong 
to the set of admissible solutions X; 2) the solution must be 
optimal, that is, it must optimize the efficiency vector y while 
considering the priority of the criteria.

Decision-making problems are described by the following 
optimization models:
	 x f opt y x

x X

0 1= −

∈
[ ( ( ), )]λ 	

Or, in the case of non-uniqueness of the optimal solu-
tion—when the optimal subset of solutions X 

0 is chosen as 
optimal—the model is written as:
	 X x f opt y x

x X x X

0 0 1= = ∪
∈

−

∈
{ } [ ( ( ), )]λ 	

where λ = (λ1, λ2, ..., λm) is a priority vector that characterizes 
the relative importance of local criteria in the optimization 
problem; f –1 is the inverse mapping y → x = f –1(y).

Problem (152)–(200) is a one-vector, finite-dimensional, 
single-scale convex problem with prioritized local criteria. 
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Table 3. Results of the optimal control problem for the ethylene production complex
Tabela 3. Wyniki problemu optymalnego sterowania dla kompleksu produkcji etylenu

Parameters

Problem solution

with a crisp  
objective function

by the hard  
priority method

flexible priority  
method

weight = 0.2

flexible priority  
method

weight = 0.5

Temperature of the top K-10 [°C] –94 –95 –93 –93

Temperature of the bottom K-10 [°C] 10 8 7 8

Propylene content in distillate K-11 [%] 0.441 0.289 0.395 0.280

Temperature of the top K-11 [°C] –12 –14 –13 –14

Temperature of the bottom K-11 [°C] 71 71 74 72

Content of  ∑C2 hydrocarbons in the bottom  
product K-10 [%] 72,563 73.855 74.863 73.821

Temperature at the outlet of the R-2 reactor [°C] 104 104 105 100

Ethylene content in distillate K-11 [%] 83.868 84.455 81.313 77.226

Hydrogen- to-acetylene ratio in the EEF at the 
inlet of the R-2 reactor 3.408 3.409 3.658 2

Ethylene content in distillate K-10 [%] 0.614 0.233 0.101 0.295

Ethylene content at the outlet of P-2 [%] 77.435 79.548 77.935 80.3

Temperature of the top K-12,13 [°C] –30 –28 –30 –30

Temperature of the bottom K-12,13 [°C] –6 –6 –6 –6

The output of commercial ethylene from the  
ethylene fractionation column K-12,13 [t/h] 34.1 34.5 35.1 35.2

The results of solving this problem are presented in Table 3. 
The problem was solved using both hard and flexible priority 
methods, with two different weights.

Furthermore, the solution of this fuzzy problem was com-
pared with the solution of a fuzzy problem that uses a crisp 
objective function. The hard priority principle gives good 
results when searching not for a single exact optimum, but for 
a certain range of solutions close to the optimum—a quasi-
optimal set X 0j.

An advantage of the hard priority method is that it does 
not require the specification of quantitative characteristics for 
the criteria priority λ or α, but only the order of the criteria in 
a priority series (α = (α1, α2, ..., αm) is a weight vector, each 
component of which has the meaning of a weight coefficient 
determining the relative superiority of the j-th criterion over 
the rest).

The application of the flexible priority method requires 
specification of quantitative characteristics of priority λ or 
α, allowing only some preference to be given to the more 
important criteria when selecting a solution. In practice, this 
results in evaluating the solution quality using a weighted 
vector criterion – a vector pair (y, λ) – and modifying the 
optimality principle to transition from opt y to opt (y, α).  
This correction of the optimality principle may be implemented 
in various ways. In the case of  problem (152)–(200), the 

correction is based on the principle of fair concession with 
priority, in this case: 

	 opt y y
y Y

j j
j I

( , )α α=
∈ ∈
∑max log 	

An important advantage of the flexible priority method 
is that it enables, within reasonable limits, the assignment of 
preference to more important criteria, taking into account their 
relative importance.

As demonstrated in the table of results pertaining to the 
solution of the optimal control problem of the technologi-
cal complex for ethylene production using the methods of 
vector optimization, it is possible to achieve a decrease of 
the propylene content (concentration) in the distillate of the 
deethanization rectification column, which makes it possible 
to direct the amount of ∑C3 hydrocarbons to the technologi-
cal block for the production of commercial propylene and 
propane. In addition, a slight reduction in the temperatures 
of the rectification columns is achieved, leading to improved 
product purity and reduced thermal energy consumption for 
the process as a whole. Furthermore, based on the reduction 
in the ethylene content in the distillate of the demethanization 
column, it becomes possible to redirect the ∑C2 hydrocarbons 
for further processing, resulting in an increase in the purified 
ethylene content in the ethane-ethylene fraction at the outlet 
of the acetylene hydrogenation reactor.
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Results

A physically justified statement of the optimization prob-
lem for the technological complex for commercial ethylene 
production has been developed. It has been demonstrated 
that the optimal control problem for the studied complex is 
reduced to a mathematical programming problem with fuzzy 
parameters. A deterministic analog of a multidimensional 
nonlinear optimization problem with a fuzzy objective func-
tion and fuzzy constraints has been constructed. As a result, 
a multi-criteria vector optimization problem for control of 
a commercial ethylene production complex has been obtained. 
The applicability of various multi-criteria optimization methods 
to the solution of the obtained crisp analog of the fuzzy control 
optimization problem for the technological complex for com-
mercial ethylene production has been studied. As shown by 
the obtained results, solving the fuzzy problem using any of 
the multi-criteria optimization methods yields an increase in 
ethylene output compared to the solution of a fuzzy problem 
with a crisp objective function, while also ensuring the physical 
validity of the solution.
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