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Application of decision tree algorithm for accurate prediction  
of liquid loading in gas-condensate wells
Zastosowanie algorytmu drzewa decyzyjnego do dokładnego przewidywania  
obciążenia otworu cieczą w odwiertach gazowo-kondensatowych

Kanan Aliyev

Azerbaijan State Oil and Industry University

ABSTRACT: Liquid loading occurs when gas fails to lift co-produced condensates to the surface, causing backpressure, reduced produc-
tion, and possibly resulting in well shutdown. This occurs when gas velocity falls below the critical level required to carry liquids, leading 
to their accumulation in the wellbore. Accumulation can occur in both vertical and horizontal wells, reducing efficiency, particularly in 
wet or retrograde gas wells. Accurate prediction and monitoring are crucial but often challenging due to the complexities of multiphase 
flow and estimating bottom-hole pressure. This study assesses the effectiveness of the decision tree algorithm for predicting the loading 
status of these wells, aiming to improve predictive accuracy and operational decision-making. Two decision tree models were developed 
using wellhead pressure and gas production rate as input features. The first model, with a maximum tree depth of 3, was designed to 
prevent overfitting by limiting the complexity of the decision tree. This constraint helped maintain model simplicity while still achiev-
ing an accuracy of 80%. The depth limitation ensured that the tree did not grow excessively, which can sometimes lead to overfitting, 
and instead focuses on capturing the most significant data patterns with a limited number of decision nodes. The second model, with 
constraints on node splits and leaf samples but no depth limitation, reached an accuracy of 78%. The results revealed that gas produc-
tion rate is a more influential factor than wellhead pressure in determining well loading status, with the second model indicating that 
wellhead pressure becomes less relevant when the gas rate exceeds 75,365.2 m3/day. Both models performed well overall but showed 
potential for improvement. Future work should focus on enhancing model accuracy through advanced techniques such as ensemble 
methods and by increasing the dataset size through the inclusion of additional well data. Despite the limitations of a relatively small 
sample size, the findings underscore the potential of decision tree models in optimizing well productivity and operational efficiency in 
gas-condensate reservoir management.
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STRESZCZENIE: Zjawisko obciążenia otworu cieczą występuje, gdy gaz nie jest w stanie wynieść współprodukowanego kondensatu na 
powierzchnię, co powoduje wzrost ciśnienia zwrotnego, spadek wydajności oraz potencjalnie prowadzi do likwidacji odwiertu. Zjawisko to 
zachodzi wówczas, gdy prędkość gazu spada poniżej poziomu krytycznego niezbędnego do transportu cieczy, co prowadzi do gromadzenia 
się jej w odwiercie. Do akumulacji może dochodzić zarówno w odwiertach pionowych, jak i horyzontalnych, co zmniejsza ich wydajność, 
szczególnie w przypadku złóż gazu mokrego, lub w których występuje kondensacja wsteczna. Tym samym niezbędne jest dokładne 
prognozowanie i monitorowanie tego zjawiska, co jednak często jest utrudnione ze względu na złożoność przepływu wielofazowego 
oraz trudności w oszacowaniu ciśnienia przy dnie odwiertu. W niniejszym artykule przeprowadzono ocenę skuteczności zastosowania 
algorytmu drzewa decyzyjnego do przewidywania statusu zalegania cieczy w odwiertach, w celu zwiększenia dokładności prognoz oraz 
usprawnienia procesu podejmowania decyzji operacyjnych. Opracowano dwa modele drzewa decyzyjnego, w których jako dane wejściowe 
zastosowano ciśnienie na głowicy odwiertu oraz wydajność wydobycia gazu. Pierwszy model, z maksymalną głębokością drzewa ogra-
niczoną do 3, został zaprojektowany tak, aby uniknąć przeuczenia poprzez ograniczenie złożoności struktury decyzyjnej. To ograniczenie 
pozwoliło zachować prostotę modelu przy jednoczesnym osiągnięciu dokładności na poziomie 80%. Ograniczenie głębokości zapobiegło 
nadmiernemu rozrostowi drzewa, który mógłby prowadzić do przeuczenia modelu, jednocześnie umożliwiając uchwycenie najistotniejszych 
wzorców w analizowanych danych przy użyciu niewielkiej liczby węzłów decyzyjnych. Drugi model, z ograniczeniami dotyczącymi liczby 
podziałów węzłów i liczby próbek w liściu, lecz bez limitu głębokości drzewa, osiągnął dokładność 78%. Wyniki wykazały, że wydajność 
wydobycia jest czynnikiem bardziej znaczącym niż ciśnienie na głowicy odwiertu w określaniu statusu zalegania cieczy, a w przypadku 
drugiego modelu zauważono, że ciśnienie na głowicy odwiertu traci na znaczeniu, gdy wydajność gazu przekracza 75 365.2 m3/dobę.  
Oba modele wykazały dobrą ogólną skuteczność, ale również potencjał do dalszego udoskonalania. Przyszłe prace powinny skupić 
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się na poprawie dokładności predykcyjnej poprzez zastosowanie zaawansowanych metod, takich jak techniki zespołowe, jak również 
zwiększenie liczby danych poprzez uwzględnienie informacji z dodatkowych odwiertów. Pomimo ograniczeń związanych ze stosun-
kowo niewielką liczbą próbek, wyniki podkreślają potencjał modeli drzew decyzyjnych w optymalizacji wydajności odwiertów oraz 
efektywności operacyjnej w zarządzaniu złożami gazowo-kondensatowymi.

Słowa kluczowe: złoża gazowo-kondensatowe, obciążenie otworu cieczą, uczenie maszynowe, algorytm drzewa decyzyjnego, klasy-
fikacja nadzorowana.

Introduction

Liquid loading poses a significant challenge in gas-con-
densate wells, particularly as declining reservoir pressures 
affect production efficiency. In the early stages, high gas flow 
rates can effectively transport liquid through the tubing within 
the gas core. However, as reservoir pressure declines, liquid 
accumulation begins in the wellbore, leading to an increase 
in “liquid hold-up” within the tubing. This buildup raises the 
tubing gradient, which adds backpressure on the formation 
and lowers surface tubing pressure (Hamidov and Fataliyev, 
2016; Lea and Rowlan, 2019). In wells without a packer, 
a sudden drop in wellhead pressure (Pwh), combined with an 
increase in tubing-casing annulus pressure (Pcsg), is a strong 
indicator of liquid loading (Hearn, 2010; Lea and Rowlan, 
2019; Tugan, 2020). 

Decline curve analysis (DCA) is a method for detecting 
liquid loading in gas-condensate wells by analyzing the relation-
ship between oil or gas flow rates (q) and time (t) in producing 
wells (Belyadi et al., 2019; Franchi, 2010). Under normal 
conditions, where gas is produced without interference, the 
DCA exhibits smoothly declining, exponential curves due to 
reservoir depletion. However, liquid loading is often signaled by 
abrupt deviations from this pattern, leading to steeper declines 
in the curve (Lea and Rowlan, 2019). Additionally, factors 
such as the reservoir's stress sensitivity and a significant drop 
in bottom-hole formation pressure can further accelerate the 
reduction in gas production (Zhu, 2009). Other issues, including 
corrosion, inadequate cementation, and technological malfunc-
tions, can also cause leaks in the production string, thereby 
reducing gas flow rates. Therefore, engineers must carefully 
identify the underlying cause of rapid gas production decline 
in gas-condensate wells, considering all these potential factors.

Another approach is nodal analysis, a graphical technique 
commonly employed to illustrate how gas flow rates from 
the reservoir change in response to pressure variations within 
the wellbore. This method is particularly beneficial for gas-
condensate wells, where it helps predict stable flow conditions. 
Stability is indicated when the tubing curve intersects the inflow 
performance relationship (IPR) curve to the right of its mini-
mum point. Conversely, if the operating point falls to the left 
of the minimum pressure point, liquid loading is anticipated 
(Waltrich et al., 2015; Lea and Rowlan, 2019). Pagan et al. 

(2016) enhanced this technique to more precisely predict the 
onset of liquid loading, showing strong alignment with both 
experimental and field data. However, nodal analysis faces 
challenges in low permeability reservoirs, where the IPR curves 
intersect the tubing performance relationship (TPR) curve to 
the left of the minimum pressure point. In such cases, wells 
might continue to produce without exhibiting liquid loading 
symptoms (Lea and Rowlan, 2019). This suggests that mini-
mum pressure alone may not always be a reliable predictor 
of liquid loading, as factors like permeability can also play 
a significant role.

Liquid loading in gas wells occurs when the gas velocity 
is insufficient to transport liquid to the surface, requiring pro-
duction at or above a certain minimum flow rate, known as the 
critical gas rate. This rate can be estimated using various models, 
including the well-established Turner correlation (Turner et al. 
1969). In this research, the Authors examined both continuous 
film and entrained droplet movement models, ultimately con-
cluding that the droplet model was the most suitable for their 
data. This model calculates critical loading velocity with a 20% 
adjustment based on the forces acting on the droplets, but it is 
limited to wells with high wellhead pressure and assumes that 
the droplets are spherical. Coleman et al. (1991) demonstrated 
that Turner’s model accurately predicts the critical flow rate 
for low-pressure gas wells, particularly those with wellhead 
pressures below 3.448 MPa (500 psi), without necessitating 
the 20% adjustment. Building upon this foundation Nosseir 
et al. (2000), Li et al. (2002), Guo et al. (2006), Zhou and Yuan 
(2010), Luan and He (2012), Wang et al. (2015), and El Fadili 
and Shah (2017), have refined Turner's model by incorporat-
ing additional factors such as flow patterns, drag coefficients, 
droplet shapes, kinetic energy, Weber number, and inclination. 
These enhancements aim to improve the accuracy of predict-
ing critical gas velocity. Despite these advancements, many 
models are based on assumptions that may not fully capture 
real conditions, thereby limiting their practical application. 
Moreover, the complexity of multiphase flow in gas-condensate 
wells, exacerbated by variations in pressure and temperature 
throughout the well, presents significant challenges in develop-
ing a universally applicable model for predicting liquid loading.

In recent years, advancements in technology, particularly in 
machine learning (ML), have significantly improved efficiency, 
automation, and scalability. Various authors have applied dif-
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ferent ML algorithms to problems in petroleum engineering, 
yielding promising results. Studies indicate that the decision tree 
algorithm, a popular classification method in ML, is particularly 
effective for predicting liquid loading status in gas-condensate 
wells. According to the results of Almashan et al. (2020), the 
boosted decision tree regression (BDTR) model demonstrated 
its effectiveness in predicting liquid loading (liquid holdup, 
HL) in multiphase flows within oil and gas wells. Trained 
on experimental datasets, the BDTR model outperformed 
traditional empirical correlations, offering superior accuracy 
without the limitations of specific flow conditions. This high-
lights the decision tree model as a powerful tool for accurately 
predicting liquid loading. In the study conducted by Joseph 
and Bassey (2022), the decision tree model was successfully 
utilized to classify the liquid loading status of gas wells. This 
model demonstrated a good degree of accuracy, predicting about 
81% of the status of the wells under investigation. Validated 
with actual data, the decision tree effectively identified liquid 
loading phenomena, highlighting its usefulness compared to 
empirical models. In the study by Chemmakh et al. (2023), 
the extreme gradient boosting (XGBoost) model proved to 
be a highly effective tool for predicting the status of wells as 
either “loaded” or “unloaded” based on various completion 
and fluid properties, including diameter, liquid density, gas 
density, liquid viscosity, gas viscosity, angle of inclination, 
superficial liquid velocity, and interfacial tension. By learning 
from previous data, XGBoost outperformed other models and 
correlations, achieving an impressive F-1 score of 0.947 and 
correctly classifying 46 out of 50 test cases. This demonstrates 
its superior performance in accurately determining the liquid 
loading status of wells.

Almashan et al. (2020), Joseph and Bassey (2022), and 
Chemmakh et al. (2023) suggested that classical machine learn-
ing techniques provide significant advantages and promising 
opportunities for investigating liquid loading in gas wells, offer-
ing a more robust alternative to empirical models that depend on 
numerous simplifications. This research introduces a simplified 
decision tree approach that utilizes only wellhead pressure and 
gas production rate to effectively predict the liquid loading 
status in gas-condensate wells. This minimal-input model  
distinguishes itself from prior work by emphasizing inter-
pretability and practicality without compromising predictive 
performance.

The novelty of this work lies in its focus on operational 
efficiency, relying solely on basic surface data to predict liquid 
loading. Furthermore, the model is trained on a comprehensive 
dataset compiled from multiple sources, enhancing its robust-
ness and generalizability across various field conditions. This 
approach offers a cost-effective and easily deployable alterna-
tive to more data-intensive machine learning models.

Theoretical background

The decision tree algorithm is a widely used tool in machine 
learning, known for its straightforward approach to data clas-
sification. It is easy to understand, interpret, and implement, 
making it a more favorable choice for studies (Aggarwal et al., 
2020; James et al., 2023). Decision trees are applied in various 
areas, including business, science, and healthcare, where they 
help simplify complex decision-making tasks (Sharma and 
Kumar, 2017; Aggarwal et al., 2020).

One of the strengths of decision trees is their versatility; 
they work well with both categorical and continuous data and 
can handle missing values effectively (James et al., 2023). The 
structure of a decision tree is hierarchical, with each node rep-
resenting a decision based on input features, and each branch 
representing a decision rule. The tree ends in leaf nodes, which 
represent the final class label or outcome (Yang, 2019). Figure 1 
illustrates the structure of a simple decision tree.

The algorithm works by splitting the dataset into subsets, 
starting at the root node. At each step, the feature that best 
separates the classes is chosen, often using metrics like Gini 
impurity or information gain. Equation 1 shows calculation 
of the Gini impurity:
	 Gini Impurity t pii

n( ) = −
=∑1 2
1

	 (1)
where: 
pi – proportion of samples belonging to class i at node ti,
n – total number of classes.

Figure 1. Structure of a simple decision tree
Rysunek 1. Struktura prostego drzewa decyzyjnego

The Gini impurity ranges from 0 to 0.5, where a lower value 
indicates a better split, with 0 denoting a pure node and 0.5 
representing the most impure node. The decision tree aims to 
minimize this impurity by splitting the dataset at each node, 
choosing the split that results in the lowest weighted average 
Gini impurity across the child nodes. This process continues 
until a stopping criterion is reached, such as a maximum tree 
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depth or a minimum number of samples per leaf (Hassan et al., 
2023). The resulting tree-like structure provides a clear visual 
representation of the decision-making process, from the root 
to the leaf nodes. 

However, decision trees can sometimes overfit, especially 
with complex datasets. This means they might not perform 
well on new, unseen data. To address this, techniques such 
as pruning are used to simplify the tree by halting its growth 
early and removing branches that do not add significant pre-
dictive value, based on criteria such as Gini impurity or in-
formation gain. This pre-pruning technique typically sets 
thresholds, such as a maximum tree depth or a minimum 
number of samples per leaf, to determine when to stop splitting.  
Additionally, ensemble methods like random forests have been 
developed to improve the accuracy and reliability of deci-
sion trees by combining the results of multiple trees (James  
et al., 2023).

Materials and Methods

To build a robust dataset for training and testing the clas-
sification model, data from various sources were combined, 
yielding 228 records. The dataset includes not only Turner’s 
experimental data but also field data used in various studies, 
covering reservoirs from the Gulf of Mexico, Yakela-Dalaoba, 
Xinjiang, and other Chinese condensate gas fields (Turner et al. 
1969, Luo et al., 2014; Zhou et al., 2016; Ikpeka and Okolo, 
2019; Ming and He, 2020; Xiao et al., 2021). Despite the 
heterogeneity of the source datasets, certain key parameters 
such as wellhead pressure, gas rate, and loading status were 
consistent across them. Leveraging this commonality, the 

datasets were synthesized to create a cohesive dataset, thereby 
augmenting the sample size while preserving diversity in well 
characteristics. The new dataset comprises data from 109 loaded 
wells and 119 not-loaded wells. The liquid loading status of 
wells is represented by categorical values (such as “not loaded” 
and “loaded”). To facilitate computational analysis, these cat-
egorical values were converted into numerical integers, with 
“not loaded” wells assigned a value of 0 and “loaded” wells 
assigned a value of 1. This transformation allows decision 
tree models to process the data more effectively. The analysis 
was performed using the Scikit-Learn library (version 1.5, 
Pedregosa et al. 2011), an open-source ML library, in Python 
(version 3.12.5). In this study, two models were developed. 
The first model was constrained by setting the maximum depth 
of the tree to 3. In the second model, the depth restriction was 
removed, instead specified a minimum of 35 samples required 
to split a node and 15 samples per leaf. These hyperparam-
eter adjustments were made to control model complexity and 
reduce overfitting. Both models were trained using 70% of 
the dataset, while the remaining 30% was reserved for test-
ing. The primary difference between the models lies in their  
structural constraints.

Results and discussion

The distribution of the two predictors – wellhead pressure 
and gas production rate – is depicted in Figure 2a and 2b, re-
spectively. The distribution patterns of both wellhead pressure 
and gas rate are characterized by notable left-skewness, which 
is unsurprising in the context of gas production operations due 
to factors such as reservoir depletion.

Figure 2. Histogram of input parameters: a) wellhead pressure, b) gas production rate
Rysunek 2. Histogram pokazujący rozkład parametrów wejściowych: a) ciśnienia na głowicy, b) wydajności wydobycia gazu
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In most scenarios, wellhead pressure remains below 
27.58 MPa, with approximately 50% of records falling be-
low 10.3 MPa. Similarly, half of the gas rate values are below 
36,542.83 m3/day. All statistical information regarding these 
two parameters is presented in Table 1.

Following the exploratory data analysis, the dataset was 
partitioned into training and test sets, with 70% of the data al-
located for model training and the remaining 30% reserved for 
evaluating its performance. Initially, a decision tree model was 
constructed without constraints using the decision tree classi-

fier from the Scikit-Learn library. This resulted in a complex 
and lengthy tree due to the high variability in the data and 
the complex relationships between the predictor and target 
features. This complexity led to overfitting, where the model 
learned too much from the training data, including its noise 
and exceptions. To address overfitting, adjustments were made, 
and two different models were developed. 

The first model involved setting a maximum depth of 3 for 
the decision tree. Figure 3 illustrates the structure of this first 
decision tree. The tree's initial split is based on the gas rate: if 
the gas rate is below a certain threshold, the model moves to 
the left branch to further evaluate whether the well is loaded. 
The subsequent splits on the left side are determined by gas rate 
and wellhead pressure values. According to this model, a well 
is predicted to be loaded with 90% probability if the gas pro-
duction rate is below 19,761.396 m3/day. Conversely, the well 
is classified as not loaded in two scenarios: (1) when the gas 
rate ranges between 19,761.396 m3/day and 75,365.289 m3/day  
and the wellhead pressure is below 19.651 MPa, and (2) when 
the gas rate exceeds 75,365.289 m3/day and the wellhead pres-
sure is above 5.878 MPa.

The accuracy of this model is 80%. Additionally, Tables 2 
and 3 present the confusion matrix and classification report for 
this model, which provide a detailed view of its classification 

Table 1. Statistical description of the input parameters
Tabela 1. Statystyczny opis parametrów wejściowych

Wellhead pressure 
[MPa]

Gas production rate  
[m3/d]

Count 228 228

Mean 11.67   55,013.66

Std 10.61   55,701.66

Min   0.34     2,054.02

25%   1.40   15,319.87

50% 10.30   36,542.83

75% 19.24   79,040.50

Max 56.64 440,580.01

Figure 3. Structure of the first decision tree (maximum depth: 3) built using the training set. Class = 1 : “loaded”, class = 0 : “not loaded”
Rysunek 3. Struktura pierwszego drzewa decyzyjnego (maksymalna głębokość: 3) zbudowanego na danych treningowych. Klasa = 1  
„obciążony”, Klasa = 0 : „nieobciążony”
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performance. The confusion matrix compares the predicted and 
actual labels of the classification model. The model correctly 
predicted 31 positive instances (true positives, or loaded cases) 
and 24 negative instances (true negatives, or unloaded cases). 
However, it made 7 false positive predictions, where unloaded 
cases were incorrectly classified as loaded, and 7 false negative 
predictions, where loaded cases were incorrectly classified 
as unloaded. The matrix indicates that the model performs 
reasonably well for both classes. 

F1 score, recall, and precision are important evaluation 
metrics used in classification tasks to assess model performance 
beyond overall accuracy. In classification, precision measures 
the proportion of true positive predictions among all predicted 
positives, indicating the accuracy of positive predictions. High 
precision means fewer false positives, whereas low precision 
suggests frequent misclassification of negatives as positives. 
Recall measures the proportion of true positives among all ac-
tual positives, reflecting the model’s ability to identify relevant 
positive cases. High recall indicates fewer false negatives, 
while low recall suggests missed positives. The F1 score is the 
harmonic mean of precision and recall, providing a balanced 
measure of both metrics. A high F1 score indicates good overall  

Table 2. Confusion matrix of the first decision tree (maximum 
depth: 3) evaluated on the test set
Tabela 2. Macierz pomyłek pierwszego modelu (maksymalna 
głębokość drzewa: 3) wyznaczona na danych testowych

Actual positive  
(1, “loaded”)

Actual negative 
(0, “not loaded”)

Predicted positive  
(1, “loaded”) 31 7

Predicted negative  
(0, “not loaded”) 7 24

Table 3. Classification report of the first decision tree (maximum 
depth: 3) 
Tabela 3. Raport klasyfikacji pierwszego modelu (maksymalna 
głębokość drzewa: 3)

Precision Recall F1 Score Support

0 (“not loaded”) 0.82 0.82 0.82 38

1 (“loaded”) 0.77 0.77 0.77 31

Accuracy – – 0.80 69

Macro avg 0.79 0.79 0.79 69

Weighted avg 0.80 0.80 0.80 69
– not applicable

Figure 4. Structure of the second decision tree built using the training set (minimum number of samples to split a node: 35, minimum 
number of samples per leaf: 15). Class = 1 : “loaded”, class = 0 : “not loaded”
Rysunek 4. Struktura drugiego drzewa decyzyjnego zbudowanego na danych treningowych (minimalna liczba próbek do podziału węzła: 
35, minimalna liczba próbek na liściu: 15). Klasa = 1  „obciążony”, Klasa = 0 : „nieobciążony”
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performance, while a low F1 score suggests a trade-off be-
tween precision and recall. Despite good precision and recall 
in the first model, there is room for improvement, particularly 
for class 1 (“loaded”), where the F1 score is somewhat lower  
at 0.77. The “Support” column in Table 3 represents the 
number of instances for each class in the dataset. This indi-
cates that, while the model is effective, there are opportuni-
ties to enhance its performance, especially for distinguishing  
class 1 (“loaded”) more accurately.

In developing the second model, several adjustments were 
implemented to refine its performance. Specifically, the mini-
mum number of samples required to split a node was set to 35, 
and the minimum number of samples per leaf was set to 15. 
Unlike the first model, there was no restriction placed on the 
maximum depth of the decision tree for the second model. 
Figure 4 illustrates the structure of the second decision tree.

Although the second model produced results similar to 
the first, its accuracy was slightly lower, at 78%. The criteria 
for determining the loading condition of the well remained 
consistent between both models. However, the second model 
revealed that when the gas rate exceeds 75,365.289 m3/day, the 
wellhead pressure no longer affects the well’s loading status. 
In this case, the well is classified as not loaded regardless of 
the wellhead pressure.

Tables 4 and 5 present the confusion matrix and classifica-
tion report for the second model, providing a comprehensive 
view of its classification performance. The model demon-
strates robust performance in distinguishing between negative 
and positive instances, with precision, recall, and F1 scores 
indicating generally good results. Nonetheless, there is room 
for improvement, particularly in reducing false positives for  
class 1 (“loaded”) and false negatives for class 0 (“not loaded”). 
Addressing these issues could enhance the model’s overall 
accuracy and reliability.

Conclusion

This study advances the prediction of liquid loading status 
in gas-condensate wells using decision tree models. The models 
were trained and evaluated on a dataset consisting of wellhead 
pressure and gas production rate, with the goal of improving 
predictive accuracy and understanding the factors influencing 
loading status. The main findings and contributions of this 
research are as follows:
1.	 	Two decision tree models were developed. The first model, 

with a maximum depth of 3, achieved an accuracy of 80%, 
successfully classifying wells based on both gas rate and well-
head pressure. The second model, incorporating constraints 
on node splits and leaf samples but with no depth restriction, 
achieved a slightly lower accuracy of 78%. This model 
revealed that when the gas rate exceeds 75,365.289 m3/day,  
wellhead pressure no longer influences loading status.

2.	 	The analysis highlighted that gas rate plays a more signifi-
cant role in determining well loading status compared to 
wellhead pressure. This insight underscores the importance 
of gas rate in the predictive model, as it was a critical factor 
in both decision trees.

3.	 	Both models demonstrated strong performance in classifying 
well loading status, with reasonable precision and recall. 
However, the results also identified areas for improvement, 
particularly in reducing false positives for class 1 (“loaded”) 
and false negatives for class 0 (“not loaded”). This suggests 
that while decision trees are effective, there is potential for 
further refinement.

4.	 	To enhance predictive accuracy, incorporating advanced 
techniques such as ensemble methods (e.g., random forests 
or boosting) could address current limitations. Additionally, 
expanding the dataset to include more diverse and larger 
samples could improve model generalization and accuracy, 
reducing overfitting and capturing more complex patterns 
in the data.
In summary, decision tree models offer valuable insights into 

the prediction of liquid loading status in gas-condensate wells. 

Table 4. Confusion matrix of the second decision tree for test set 
(minimum number of samples to split a node: 35, minimum num-
ber of samples per leaf: 15)
Tabela 4. Macierz pomyłek drugiego drzewa decyzyjnego dla 
danych testowych (minimalna liczba próbek do podziału węzła: 
35, minimalna liczba próbek na liściu: 15)

Actual positive  
(1, “loaded”)

Actual negative 
(0, “not loaded")

Predicted positive  
(1, “loaded”) 30 8

Predicted negative  
(0, “not loaded”) 7 24

Table 5. Classification report of the second decision tree  
(minimum number of samples to split a node: 35, minimum  
number of samples per leaf: 15)
Tabela 5. Raport klasyfikacji drugiego modelu (minimalna  
liczba próbek do podziału węzła: 35, minimalna liczba próbek na 
liściu: 15)

Precision Recall F1 Score Support
0 (“not loaded”) 0.81 0.79 0.80 38
1 (“loaded”) 0.75 0.77 0.76 31
Accuracy – – 0.78 69
Macro avg 0.78 0.78 0.78 69
Weighted avg 0.78 0.78 0.78 69
– not applicable
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Despite their effectiveness, there is room for improvement 
through advanced modeling techniques and larger datasets. 
Future research should focus on these aspects to further refine 
the models and enhance their predictive capabilities.
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