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Application of decision tree algorithm for accurate prediction
of liquid loading in gas-condensate wells

Zastosowanie algorytmu drzewa decyzyjnego do doktadnego przewidywania
obcigzenia otworu cieczg w odwiertach gazowo-kondensatowych

Kanan Aliyev
Azerbaijan State Oil and Industry University

ABSTRACT: Liquid loading occurs when gas fails to lift co-produced condensates to the surface, causing backpressure, reduced produc-
tion, and possibly resulting in well shutdown. This occurs when gas velocity falls below the critical level required to carry liquids, leading
to their accumulation in the wellbore. Accumulation can occur in both vertical and horizontal wells, reducing efficiency, particularly in
wet or retrograde gas wells. Accurate prediction and monitoring are crucial but often challenging due to the complexities of multiphase
flow and estimating bottom-hole pressure. This study assesses the effectiveness of the decision tree algorithm for predicting the loading
status of these wells, aiming to improve predictive accuracy and operational decision-making. Two decision tree models were developed
using wellhead pressure and gas production rate as input features. The first model, with a maximum tree depth of 3, was designed to
prevent overfitting by limiting the complexity of the decision tree. This constraint helped maintain model simplicity while still achiev-
ing an accuracy of 80%. The depth limitation ensured that the tree did not grow excessively, which can sometimes lead to overfitting,
and instead focuses on capturing the most significant data patterns with a limited number of decision nodes. The second model, with
constraints on node splits and leaf samples but no depth limitation, reached an accuracy of 78%. The results revealed that gas produc-
tion rate is a more influential factor than wellhead pressure in determining well loading status, with the second model indicating that
wellhead pressure becomes less relevant when the gas rate exceeds 75,365.2 m*/day. Both models performed well overall but showed
potential for improvement. Future work should focus on enhancing model accuracy through advanced techniques such as ensemble
methods and by increasing the dataset size through the inclusion of additional well data. Despite the limitations of a relatively small
sample size, the findings underscore the potential of decision tree models in optimizing well productivity and operational efficiency in
gas-condensate reservoir management.
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STRESZCZENIE: Zjawisko obciagzenia otworu ciecza wystepuje, gdy gaz nie jest w stanie wynie$¢ wspotprodukowanego kondensatu na
powierzchnig, co powoduje wzrost ciSnienia zwrotnego, spadek wydajnosci oraz potencjalnie prowadzi do likwidacji odwiertu. Zjawisko to
zachodzi wowczas, gdy predkos$¢ gazu spada ponizej poziomu krytycznego niezbednego do transportu cieczy, co prowadzi do gromadzenia
si¢ jej w odwiercie. Do akumulacji moze dochodzi¢ zardbwno w odwiertach pionowych, jak i horyzontalnych, co zmniejsza ich wydajnos¢,
szczegblnie w przypadku zt6z gazu mokrego, lub w ktorych wystepuje kondensacja wsteczna. Tym samym niezbedne jest doktadne
prognozowanie i monitorowanie tego zjawiska, co jednak czesto jest utrudnione ze wzglgdu na ztozonos¢ przeptywu wielofazowego
oraz trudno$ci w oszacowaniu ci$nienia przy dnie odwiertu. W niniejszym artykule przeprowadzono oceng skutecznosci zastosowania
algorytmu drzewa decyzyjnego do przewidywania statusu zalegania cieczy w odwiertach, w celu zwigkszenia doktadnosci prognoz oraz
usprawnienia procesu podejmowania decyzji operacyjnych. Opracowano dwa modele drzewa decyzyjnego, w ktorych jako dane wejsciowe
zastosowano ci$nienie na glowicy odwiertu oraz wydajno$¢ wydobycia gazu. Pierwszy model, z maksymalng gieboko$cig drzewa ogra-
niczong do 3, zostal zaprojektowany tak, aby unikna¢ przeuczenia poprzez ograniczenie ztozonosci struktury decyzyjnej. To ograniczenie
pozwolito zachowa¢ prostote modelu przy jednoczesnym osiagnigciu doktadnosci na poziomie 80%. Ograniczenie glgbokosci zapobiegto
nadmiernemu rozrostowi drzewa, ktory mogtby prowadzi¢ do przeuczenia modelu, jednoczesnie umozliwiajac uchwycenie najistotniejszych
wzorcow w analizowanych danych przy uzyciu niewielkiej liczby weztow decyzyjnych. Drugi model, z ograniczeniami dotyczacymi liczby
podzialow weztow i liczby probek w lisciu, lecz bez limitu glgbokosci drzewa, osiagnat doktadnos¢ 78%. Wyniki wykazaty, ze wydajnosé
wydobycia jest czynnikiem bardziej znaczgcym niz cisnienie na glowicy odwiertu w okre$laniu statusu zalegania cieczy, a w przypadku
drugiego modelu zauwazono, Ze ci$nienie na glowicy odwiertu traci na znaczeniu, gdy wydajno$¢ gazu przekracza 75 365.2 m*/dobe.
Oba modele wykazaty dobra ogolng skutecznosé, ale rowniez potencjat do dalszego udoskonalania. Przyszle prace powinny skupié
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si¢ na poprawie doktadnosci predykcyjnej poprzez zastosowanie zaawansowanych metod, takich jak techniki zespotowe, jak roéwniez
zwigkszenie liczby danych poprzez uwzglednienie informacji z dodatkowych odwiertéow. Pomimo ograniczen zwiazanych ze stosun-
kowo niewielkg liczbg probek, wyniki podkreslajg potencjat modeli drzew decyzyjnych w optymalizacji wydajnosci odwiertow oraz
efektywnosci operacyjnej w zarzadzaniu ztozami gazowo-kondensatowymi.

Stowa kluczowe: zloza gazowo-kondensatowe, obcigzenie otworu cieczg, uczenie maszynowe, algorytm drzewa decyzyjnego, klasy-

fikacja nadzorowana.

Introduction

Liquid loading poses a significant challenge in gas-con-
densate wells, particularly as declining reservoir pressures
affect production efficiency. In the early stages, high gas flow
rates can effectively transport liquid through the tubing within
the gas core. However, as reservoir pressure declines, liquid
accumulation begins in the wellbore, leading to an increase
in “liquid hold-up” within the tubing. This buildup raises the
tubing gradient, which adds backpressure on the formation
and lowers surface tubing pressure (Hamidov and Fataliyev,
2016; Lea and Rowlan, 2019). In wells without a packer,
a sudden drop in wellhead pressure (Pwh), combined with an
increase in tubing-casing annulus pressure (Pcsg), is a strong
indicator of liquid loading (Hearn, 2010; Lea and Rowlan,
2019; Tugan, 2020).

Decline curve analysis (DCA) is a method for detecting
liquid loading in gas-condensate wells by analyzing the relation-
ship between oil or gas flow rates (¢) and time (¢) in producing
wells (Belyadi et al., 2019; Franchi, 2010). Under normal
conditions, where gas is produced without interference, the
DCA exhibits smoothly declining, exponential curves due to
reservoir depletion. However, liquid loading is often signaled by
abrupt deviations from this pattern, leading to steeper declines
in the curve (Lea and Rowlan, 2019). Additionally, factors
such as the reservoir's stress sensitivity and a significant drop
in bottom-hole formation pressure can further accelerate the
reduction in gas production (Zhu, 2009). Other issues, including
corrosion, inadequate cementation, and technological malfunc-
tions, can also cause leaks in the production string, thereby
reducing gas flow rates. Therefore, engineers must carefully
identify the underlying cause of rapid gas production decline
in gas-condensate wells, considering all these potential factors.

Another approach is nodal analysis, a graphical technique
commonly employed to illustrate how gas flow rates from
the reservoir change in response to pressure variations within
the wellbore. This method is particularly beneficial for gas-
condensate wells, where it helps predict stable flow conditions.
Stability is indicated when the tubing curve intersects the inflow
performance relationship (IPR) curve to the right of its mini-
mum point. Conversely, if the operating point falls to the left
of the minimum pressure point, liquid loading is anticipated
(Waltrich et al., 2015; Lea and Rowlan, 2019). Pagan et al.

(2016) enhanced this technique to more precisely predict the
onset of liquid loading, showing strong alignment with both
experimental and field data. However, nodal analysis faces
challenges in low permeability reservoirs, where the IPR curves
intersect the tubing performance relationship (TPR) curve to
the left of the minimum pressure point. In such cases, wells
might continue to produce without exhibiting liquid loading
symptoms (Lea and Rowlan, 2019). This suggests that mini-
mum pressure alone may not always be a reliable predictor
of liquid loading, as factors like permeability can also play
a significant role.

Liquid loading in gas wells occurs when the gas velocity
is insufficient to transport liquid to the surface, requiring pro-
duction at or above a certain minimum flow rate, known as the
critical gas rate. This rate can be estimated using various models,
including the well-established Turner correlation (Turner et al.
1969). In this research, the Authors examined both continuous
film and entrained droplet movement models, ultimately con-
cluding that the droplet model was the most suitable for their
data. This model calculates critical loading velocity with a 20%
adjustment based on the forces acting on the droplets, but it is
limited to wells with high wellhead pressure and assumes that
the droplets are spherical. Coleman et al. (1991) demonstrated
that Turner’s model accurately predicts the critical flow rate
for low-pressure gas wells, particularly those with wellhead
pressures below 3.448 MPa (500 psi), without necessitating
the 20% adjustment. Building upon this foundation Nosseir
et al. (2000), Li et al. (2002), Guo et al. (2006), Zhou and Yuan
(2010), Luan and He (2012), Wang et al. (2015), and El Fadili
and Shah (2017), have refined Turner's model by incorporat-
ing additional factors such as flow patterns, drag coefficients,
droplet shapes, kinetic energy, Weber number, and inclination.
These enhancements aim to improve the accuracy of predict-
ing critical gas velocity. Despite these advancements, many
models are based on assumptions that may not fully capture
real conditions, thereby limiting their practical application.
Moreover, the complexity of multiphase flow in gas-condensate
wells, exacerbated by variations in pressure and temperature
throughout the well, presents significant challenges in develop-
ing a universally applicable model for predicting liquid loading.

In recent years, advancements in technology, particularly in
machine learning (ML), have significantly improved efficiency,
automation, and scalability. Various authors have applied dif-
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ferent ML algorithms to problems in petroleum engineering,
yielding promising results. Studies indicate that the decision tree
algorithm, a popular classification method in ML, is particularly
effective for predicting liquid loading status in gas-condensate
wells. According to the results of Almashan et al. (2020), the
boosted decision tree regression (BDTR) model demonstrated
its effectiveness in predicting liquid loading (liquid holdup,
HL) in multiphase flows within oil and gas wells. Trained
on experimental datasets, the BDTR model outperformed
traditional empirical correlations, offering superior accuracy
without the limitations of specific flow conditions. This high-
lights the decision tree model as a powerful tool for accurately
predicting liquid loading. In the study conducted by Joseph
and Bassey (2022), the decision tree model was successfully
utilized to classify the liquid loading status of gas wells. This
model demonstrated a good degree of accuracy, predicting about
81% of the status of the wells under investigation. Validated
with actual data, the decision tree effectively identified liquid
loading phenomena, highlighting its usefulness compared to
empirical models. In the study by Chemmakh et al. (2023),
the extreme gradient boosting (XGBoost) model proved to
be a highly effective tool for predicting the status of wells as
either “loaded” or “unloaded” based on various completion
and fluid properties, including diameter, liquid density, gas
density, liquid viscosity, gas viscosity, angle of inclination,
superficial liquid velocity, and interfacial tension. By learning
from previous data, XGBoost outperformed other models and
correlations, achieving an impressive F-1 score of 0.947 and
correctly classifying 46 out of 50 test cases. This demonstrates
its superior performance in accurately determining the liquid
loading status of wells.

Almashan et al. (2020), Joseph and Bassey (2022), and
Chemmakh et al. (2023) suggested that classical machine learn-
ing techniques provide significant advantages and promising
opportunities for investigating liquid loading in gas wells, offer-
ing a more robust alternative to empirical models that depend on
numerous simplifications. This research introduces a simplified
decision tree approach that utilizes only wellhead pressure and
gas production rate to effectively predict the liquid loading
status in gas-condensate wells. This minimal-input model
distinguishes itself from prior work by emphasizing inter-
pretability and practicality without compromising predictive
performance.

The novelty of this work lies in its focus on operational
efficiency, relying solely on basic surface data to predict liquid
loading. Furthermore, the model is trained on a comprehensive
dataset compiled from multiple sources, enhancing its robust-
ness and generalizability across various field conditions. This
approach offers a cost-effective and easily deployable alterna-
tive to more data-intensive machine learning models.
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Theoretical background

The decision tree algorithm is a widely used tool in machine
learning, known for its straightforward approach to data clas-
sification. It is easy to understand, interpret, and implement,
making it a more favorable choice for studies (Aggarwal et al.,
2020; James et al., 2023). Decision trees are applied in various
areas, including business, science, and healthcare, where they
help simplify complex decision-making tasks (Sharma and
Kumar, 2017; Aggarwal et al., 2020).

One of the strengths of decision trees is their versatility;
they work well with both categorical and continuous data and
can handle missing values effectively (James et al., 2023). The
structure of a decision tree is hierarchical, with each node rep-
resenting a decision based on input features, and each branch
representing a decision rule. The tree ends in leaf nodes, which
represent the final class label or outcome (Yang, 2019). Figure 1
illustrates the structure of a simple decision tree.

The algorithm works by splitting the dataset into subsets,
starting at the root node. At each step, the feature that best
separates the classes is chosen, often using metrics like Gini
impurity or information gain. Equation 1 shows calculation
of the Gini impurity:

Gini Impurity(t)=1- Z?:l p,»2 ()
where:
p; — proportion of samples belonging to class i at node ¢,,
n — total number of classes.

Branch Root node

Leaf node Leaf node Leaf node

Leaf node Leaf node

Figure 1. Structure of a simple decision tree

Rysunek 1. Struktura prostego drzewa decyzyjnego

The Gini impurity ranges from 0 to 0.5, where a lower value
indicates a better split, with 0 denoting a pure node and 0.5
representing the most impure node. The decision tree aims to
minimize this impurity by splitting the dataset at each node,
choosing the split that results in the lowest weighted average
Gini impurity across the child nodes. This process continues
until a stopping criterion is reached, such as a maximum tree



depth or a minimum number of samples per leaf (Hassan et al.,
2023). The resulting tree-like structure provides a clear visual
representation of the decision-making process, from the root
to the leaf nodes.

However, decision trees can sometimes overfit, especially
with complex datasets. This means they might not perform
well on new, unseen data. To address this, techniques such
as pruning are used to simplify the tree by halting its growth
early and removing branches that do not add significant pre-
dictive value, based on criteria such as Gini impurity or in-
formation gain. This pre-pruning technique typically sets
thresholds, such as a maximum tree depth or a minimum
number of samples per leaf, to determine when to stop splitting.
Additionally, ensemble methods like random forests have been
developed to improve the accuracy and reliability of deci-
sion trees by combining the results of multiple trees (James
et al., 2023).

Materials and Methods

To build a robust dataset for training and testing the clas-
sification model, data from various sources were combined,
yielding 228 records. The dataset includes not only Turner’s
experimental data but also field data used in various studies,
covering reservoirs from the Gulf of Mexico, Yakela-Dalaoba,
Xinjiang, and other Chinese condensate gas fields (Turner et al.
1969, Luo et al., 2014; Zhou et al., 2016; Ikpeka and Okolo,
2019; Ming and He, 2020; Xiao et al., 2021). Despite the
heterogeneity of the source datasets, certain key parameters
such as wellhead pressure, gas rate, and loading status were
consistent across them. Leveraging this commonality, the
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datasets were synthesized to create a cohesive dataset, thereby
augmenting the sample size while preserving diversity in well
characteristics. The new dataset comprises data from 109 loaded
wells and 119 not-loaded wells. The liquid loading status of
wells is represented by categorical values (such as “not loaded”
and “loaded”). To facilitate computational analysis, these cat-
egorical values were converted into numerical integers, with
“not loaded” wells assigned a value of 0 and “loaded” wells
assigned a value of 1. This transformation allows decision
tree models to process the data more effectively. The analysis
was performed using the Scikit-Learn library (version 1.5,
Pedregosa et al. 2011), an open-source ML library, in Python
(version 3.12.5). In this study, two models were developed.
The first model was constrained by setting the maximum depth
of the tree to 3. In the second model, the depth restriction was
removed, instead specified a minimum of 35 samples required
to split a node and 15 samples per leaf. These hyperparam-
eter adjustments were made to control model complexity and
reduce overfitting. Both models were trained using 70% of
the dataset, while the remaining 30% was reserved for test-
ing. The primary difference between the models lies in their
structural constraints.

Results and discussion

The distribution of the two predictors — wellhead pressure
and gas production rate — is depicted in Figure 2a and 2b, re-
spectively. The distribution patterns of both wellhead pressure
and gas rate are characterized by notable left-skewness, which
is unsurprising in the context of gas production operations due
to factors such as reservoir depletion.
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Figure 2. Histogram of input parameters: a) wellhead pressure, b) gas production rate

Rysunek 2. Histogram pokazujacy rozktad parametrow wejsciowych: a) ci$nienia na glowicy, b) wydajnoséci wydobycia gazu
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Table 1. Statistical description of the input parameters

Tabela 1. Statystyczny opis parametréw wejsciowych

Wellhead pressure Gas production rate
[MPa] [m*/d]

Count 228 228
Mean 11.67 55,013.66

Std 10.61 55,701.66
Min 0.34 2,054.02
25% 1.40 15,319.87
50% 10.30 36,542.83
75% 19.24 79,040.50
Max 56.64 440,580.01

In most scenarios, wellhead pressure remains below
27.58 MPa, with approximately 50% of records falling be-
low 10.3 MPa. Similarly, half of the gas rate values are below
36,542.83 m’/day. All statistical information regarding these
two parameters is presented in Table 1.

Following the exploratory data analysis, the dataset was
partitioned into training and test sets, with 70% of the data al-
located for model training and the remaining 30% reserved for
evaluating its performance. Initially, a decision tree model was
constructed without constraints using the decision tree classi-

fier from the Scikit-Learn library. This resulted in a complex
and lengthy tree due to the high variability in the data and
the complex relationships between the predictor and target
features. This complexity led to overfitting, where the model
learned too much from the training data, including its noise
and exceptions. To address overfitting, adjustments were made,
and two different models were developed.

The first model involved setting a maximum depth of 3 for
the decision tree. Figure 3 illustrates the structure of this first
decision tree. The tree's initial split is based on the gas rate: if
the gas rate is below a certain threshold, the model moves to
the left branch to further evaluate whether the well is loaded.
The subsequent splits on the left side are determined by gas rate
and wellhead pressure values. According to this model, a well
is predicted to be loaded with 90% probability if the gas pro-
duction rate is below 19,761.396 m*/day. Conversely, the well
is classified as not loaded in two scenarios: (1) when the gas
rate ranges between 19,761.396 m*/day and 75,365.289 m*/day
and the wellhead pressure is below 19.651 MPa, and (2) when
the gas rate exceeds 75,365.289 m*/day and the wellhead pres-
sure is above 5.878 MPa.

The accuracy of this model is 80%. Additionally, Tables 2
and 3 present the confusion matrix and classification report for
this model, which provide a detailed view of its classification

True

=
AN
N =

Gas rate [m3/d] < 19761.396
gini=0.5
samples = 159
value = [81, 89]
class=0

False

Gas rate [m3/d] < 75365.289
gini = 0.389
samples = 102
value = [75, 27]

class=0

Wellhead pressure [MPa] < 19.651

gini =0.468
samples = 59
value = [37, 22]
class=0
gini =0.387 gini = 0.457
samples = 42 samples =17
value = [31, 11] value = [6, 11]
class =0 class=1

Figure 3. Structure of the first decision tree (maximum depth: 3) built using the training set. Class = 1 : “loaded”, class = 0 : “not loaded”

Rysunek 3. Struktura pierwszego drzewa decyzyjnego (maksymalna gigbokos¢: 3) zbudowanego na danych treningowych. Klasa = 1

,»obcigzony”, Klasa = 0 : ,,nieobcigzony”
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Table 2. Confusion matrix of the first decision tree (maximum
depth: 3) evaluated on the test set

Tabela 2. Macierz pomytek pierwszego modelu (maksymalna
gleboko$¢ drzewa: 3) wyznaczona na danych testowych

Actual positive Actual negative
(1, “loaded”) (0, “not loaded”)
Predicted positive 31 7
(1, “loaded”)
Predicted negative
(0, “not loaded”) 7 24

Table 3. Classification report of the first decision tree (maximum
depth: 3)

Tabela 3. Raport klasyfikacji pierwszego modelu (maksymalna
glebokos¢ drzewa: 3)

Precision | Recall F1 Score | Support
0 (“not loaded”) 0.82 0.82 0.82 38
1 (“loaded”) 0.77 0.77 0.77 31
Accuracy - - 0.80 69
Macro avg 0.79 0.79 0.79 69
Weighted avg 0.80 0.80 0.80 69
—not applicable
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performance. The confusion matrix compares the predicted and
actual labels of the classification model. The model correctly
predicted 31 positive instances (true positives, or loaded cases)
and 24 negative instances (true negatives, or unloaded cases).
However, it made 7 false positive predictions, where unloaded
cases were incorrectly classified as loaded, and 7 false negative
predictions, where loaded cases were incorrectly classified
as unloaded. The matrix indicates that the model performs
reasonably well for both classes.

F1 score, recall, and precision are important evaluation
metrics used in classification tasks to assess model performance
beyond overall accuracy. In classification, precision measures
the proportion of true positive predictions among all predicted
positives, indicating the accuracy of positive predictions. High
precision means fewer false positives, whereas low precision
suggests frequent misclassification of negatives as positives.
Recall measures the proportion of true positives among all ac-
tual positives, reflecting the model’s ability to identify relevant
positive cases. High recall indicates fewer false negatives,
while low recall suggests missed positives. The F1 score is the
harmonic mean of precision and recall, providing a balanced
measure of both metrics. A high F1 score indicates good overall
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samples = 159
value = [81 89]

class =
True

\
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Wellhead pressure [MPa] < 11.5
gini = 0.387
samples = 42
value = [31, 115]
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/\
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value = [17, 9]
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Gas rate [m3/d] < 19761.396

Wellhead pressure [MPa] < 19.651
gini = 0.468
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value = [37, 22]
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\
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gini =
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Figure 4. Structure of the second decision tree built using the training set (minimum number of samples to split a node: 35, minimum
number of samples per leaf: 15). Class = 1 : “loaded”, class = 0 : “not loaded”

Rysunek 4. Struktura drugiego drzewa decyzyjnego zbudowanego na danych treningowych (minimalna liczba prébek do podziatu wezta:
35, minimalna liczba probek na lisciu: 15). Klasa =1 ,,obcigzony”, Klasa = 0 : ,,nieobcigzony”
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performance, while a low F1 score suggests a trade-off be-
tween precision and recall. Despite good precision and recall
in the first model, there is room for improvement, particularly
for class 1 (“loaded”), where the F1 score is somewhat lower
at 0.77. The “Support” column in Table 3 represents the
number of instances for each class in the dataset. This indi-
cates that, while the model is effective, there are opportuni-
ties to enhance its performance, especially for distinguishing
class 1 (“loaded”) more accurately.

In developing the second model, several adjustments were
implemented to refine its performance. Specifically, the mini-
mum number of samples required to split a node was set to 35,
and the minimum number of samples per leaf was set to 15.
Unlike the first model, there was no restriction placed on the
maximum depth of the decision tree for the second model.
Figure 4 illustrates the structure of the second decision tree.

Although the second model produced results similar to
the first, its accuracy was slightly lower, at 78%. The criteria
for determining the loading condition of the well remained
consistent between both models. However, the second model
revealed that when the gas rate exceeds 75,365.289 m*/day, the
wellhead pressure no longer affects the well’s loading status.
In this case, the well is classified as not loaded regardless of
the wellhead pressure.

Table 4. Confusion matrix of the second decision tree for test set
(minimum number of samples to split a node: 35, minimum num-
ber of samples per leaf: 15)

Tabela 4. Macierz pomytek drugiego drzewa decyzyjnego dla

danych testowych (minimalna liczba probek do podziatu wezta:
35, minimalna liczba probek na lisciu: 15)

Actual positive Actual negative

(1, “loaded™) (0, “not loaded")
Predicted positive
(1, “loaded”) 30 8
Predicted negative 7 24

(0, “not loaded”)

Table 5. Classification report of the second decision tree
(minimum number of samples to split a node: 35, minimum
number of samples per leaf: 15)

Tabela 5. Raport klasyfikacji drugiego modelu (minimalna
liczba probek do podziatu wezta: 35, minimalna liczba probek na
lisciu: 15)

Precision Recall F1 Score | Support
0 (“not loaded”) 0.81 0.79 0.80 38
1 (“loaded”) 0.75 0.77 0.76 31
Accuracy - - 0.78 69
Macro avg 0.78 0.78 0.78 69
Weighted avg 0.78 0.78 0.78 69
— not applicable
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Tables 4 and 5 present the confusion matrix and classifica-
tion report for the second model, providing a comprehensive
view of its classification performance. The model demon-
strates robust performance in distinguishing between negative
and positive instances, with precision, recall, and F1 scores
indicating generally good results. Nonetheless, there is room
for improvement, particularly in reducing false positives for
class 1 (“loaded”) and false negatives for class 0 (“not loaded”).
Addressing these issues could enhance the model’s overall
accuracy and reliability.

Conclusion

This study advances the prediction of liquid loading status
in gas-condensate wells using decision tree models. The models
were trained and evaluated on a dataset consisting of wellhead
pressure and gas production rate, with the goal of improving
predictive accuracy and understanding the factors influencing
loading status. The main findings and contributions of this
research are as follows:

1. Two decision tree models were developed. The first model,
with a maximum depth of 3, achieved an accuracy of 80%,
successfully classifying wells based on both gas rate and well-
head pressure. The second model, incorporating constraints
on node splits and leaf samples but with no depth restriction,
achieved a slightly lower accuracy of 78%. This model
revealed that when the gas rate exceeds 75,365.289 m’/day,
wellhead pressure no longer influences loading status.

2. The analysis highlighted that gas rate plays a more signifi-
cant role in determining well loading status compared to
wellhead pressure. This insight underscores the importance
of gas rate in the predictive model, as it was a critical factor
in both decision trees.

3. Both models demonstrated strong performance in classifying
well loading status, with reasonable precision and recall.
However, the results also identified areas for improvement,
particularly in reducing false positives for class 1 (“loaded”)
and false negatives for class 0 (“not loaded”). This suggests
that while decision trees are effective, there is potential for
further refinement.

4. To enhance predictive accuracy, incorporating advanced
techniques such as ensemble methods (e.g., random forests
or boosting) could address current limitations. Additionally,
expanding the dataset to include more diverse and larger
samples could improve model generalization and accuracy,
reducing overfitting and capturing more complex patterns
in the data.

In summary, decision tree models offer valuable insights into
the prediction of liquid loading status in gas-condensate wells.



Despite their effectiveness, there is room for improvement
through advanced modeling techniques and larger datasets.
Future research should focus on these aspects to further refine
the models and enhance their predictive capabilities.
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