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Numerical solutions of elastoplastic problems with application  
to underground mining stability
Numeryczne rozwiązania zagadnień sprężysto-plastycznych z zastosowaniem  
w analizie stabilności wyrobisk podziemnych

Rafail K. Mehtiyev, Yusif A. Tanriverdiyev

Azerbaijan State Oil and Industry University

ABSTRACT: A limited area of plastically deformed rocks forms around underground workings due to a specific combination of the 
strength of the main rock mass, its structure, and burial depth. The size of this zone and the magnitude of displacements along the 
excavation boundary determine the stability of the excavation. Analytical solutions of elastic-plastic problems are typically limited to 
simplified models of the medium (solid, isotropic, homogeneous) and excavation shape (circular). Mathematical modeling of elasto-
plastic deformation in a structurally heterogeneous rock mass weakened by complex-shaped underground workings is performed solely 
using numerical methods, such as the finite element method (FEM). In this context, several challenges arise that necessitate a special 
approach and reasonable assumptions regarding the validation of the deformation model. Uniformly distributed external loads are applied 
at infinity along the X and Y axes, external, which may be either unequal (λ ≠ 1) or equal (λ = 1) (λ is the lateral thrust coefficient). The 
magnitude of these loads is sufficient to generate a plastic deformation zone completely enclosing the excavation boundary. Deformation 
and failure of the rock mass occur  under prescribed deformation conditions from the elastically compressed part of the massif. The 
assumption of continuity of the medium is preserved in both elastic and plastic zones. Since rock mass movement along the longitudi-
nal axis of the excavation is restricted, the case of plane deformation is considered. To solve the problem, it is necessary to determine 
stress, strain, and displacement components in both elastic and inelastic regions, as well as the size and shape of the boundary L that  
separates them.
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STRESZCZENIE: Wokół wyrobisk podziemnych tworzy się ograniczona strefa plastycznie odkształconych skał, wynikająca ze specy-
ficznego połączenia wytrzymałości głównej masywu skalnego, jego struktury oraz głębokości zalegania. Wielkość tej strefy oraz wartość 
przemieszczeń wzdłuż obrysu wyrobiska determinują jego stateczność. Analityczne rozwiązania zagadnień sprężysto-plastycznych są 
zazwyczaj ograniczone do uproszczonych modeli ośrodka (ciągłego, izotropowego, jednorodnego) oraz kształtu wyrobiska (kołowe-
go). Matematyczne modelowanie odkształceń sprężysto-plastycznych w strukturalnie niejednorodnym masywie skalnym osłabionym 
wyrobiskami o złożonym kształcie przeprowadza się wyłącznie z wykorzystaniem metod numerycznych, takich jak metoda elementów 
skończonych (MES). W tym kontekście pojawia się szereg wyzwań, które wymagają szczególnego podejścia i przyjęcia racjonalnych 
założeń dotyczących walidacji modelu odkształceń. Na nieskończoności przyłożone są równomiernie rozłożone obciążenia zewnętrzne 
wzdłuż osi X i Y, które mogą być nierówne (λ ≠ 1) lub równe (λ = 1) względem siebie, gdzie λ oznacza współczynnik parcia bocznego. 
Wartość tych obciążeń jest wystarczająca do wygenerowania strefy plastycznej całkowicie otaczającej obrys wyrobiska. Odkształcenia 
i zniszczenia masywu skalnego następują przy zadanych warunkach odkształceniowych z części masywu poddanego sprężystemu 
ściskaniu. Założenie ciągłości ośrodka jest zachowane zarówno w strefie sprężystej, jak i plastycznej. Ponieważ ruch masywu skal-
nego wzdłuż osi podłużnej wyrobiska jest ograniczony, rozpatruje się przypadek płaskiego stanu odkształcenia. W celu rozwiązania 
zagadnienia konieczne jest wyznaczenie składowych naprężeń, odkształceń i przemieszczeń w strefach sprężystej i niesprężystej, jak 
również określenie wielkości i kształtu rozdzielającej je granicy L.

Słowa kluczowe: wyrobiska podziemne, masyw skalny, rozwiązania analityczne, zagadnienia sprężysto-plastyczne.
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Introduction

In general, the collapse of rock masses occurs under the 
influence of a complex stress state, characterized by a combina-
tion of compressive, tensile, and shear stresses. Objective data 
can be obtained by considering the physical laws governing 
the scattering process. However, the development of rigorous 
analytical methods is invariably associated with (sometimes 
controversial) assumptions and idealization of the rock, due to 
the complexity and uncertainty of real collapse mechanism. This 
often results in significant deviations between calculated indi-
cators and actual values. Nevertheless, the analytical approach 
is superior because it allows consideration of physical laws 
that operate objectively in nature. A limited area of plastically 
deformed rocks forms around underground workings, due to 
specific combination of the strength of the main rock mass, its 
structure, and burial depth (Chouly and Hild, 2022; Pengpeng 
and Jun, 2023). The size of this zone and the magnitude of 
displacement along the excavation boundary determine its 
stability. Analytical solutions of elastic-plastic problems are 
typically limited to simplified models of the medium (continu-
ous, isotropic, homogeneous) and excavation shape (circular). 

The presence of holes, grooves, recesses and other similar 
structural or technological formations induces stress concen-
trations. Plastic deformation zones arise near excavations and 
openings under sufficiently high external loads. Taking into 
account plastic zones is especially important in calculating the 
strength of structures. The complexity of elastoplastic problems 
lies in the fact that the shape and extent of the plastic region 
are unknown a priori and must be determined (Hasanov et al., 
2020). Existing solutions for plane elastoplastic problems in 
isotropic bodies with circular holes are associated with full 
coverage of the circular hole by the plastic deformation region. 
In such cases, the corresponding mathematical problem of an 
ideal plastic body is typically reduced to a boundary value prob-
lem for a biharmonic equation in a domain with an unknown 
boundary (Wu et al., 2020; Mirsalimov and Kalandarly, 2021).

Problem Statement

Let us consider the stress-strain state of a homogeneous, 
isotropic, elastic rock mass near a long, single horizontal ex-
cavation of circular cross-section, located at a depth H below 
of the earth's surface and not influenced by mining operations 
(Figure 1). The excavation has a radius R0, and a uniformly 
distributed load of intensity P0, equal to the support resistance, 
is applied to its contour. The rock medium, with a compressive 
strength Rc, is assumed to be weightless within the zone of 
influence of the excavation. The greater the excavation depth, 

the smaller the error resulting from such an idealization; as 
shown by Mikhlin (1934) and Erzhanov (1959), this error 
does not exceed 1%.

The most complex case occurs when the external loads 
along the horizontal and vertical axes are unequal, i.e., when 
the lateral thrust coefficient λ is not equal to one (λ ≠ 1).

The calculation scheme shown in Figure 1 is quite general. 
When tangential stresses exist at infinity (for example, due 
to neotectonics), the coordinate axes can always be oriented 
along the main stress directions. Consequently, the stress dis-
tribution at infinity will correspond to the assumptions made 
in the problem.

At an arbitrary point in the rock mass with coordinates  
X and Y, the stress components satisfy the equilibrium equations:
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∂
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the condition of compatibility of deformations:

	 ∂
∂

+
∂
∂









× + =

2

2

2

2 0
x y x y( )σ σ 	 (2)

In the plastic deformation zone, the physical equation is 
given as:
	 σ σθ + = −






r k A

r
B2 2 	 (3)

where: r, θ – polar radius and angle, respectively,  
A, B – constants as determined by equation (58).

Here and below, all length and displacement quantities are 
related to the excavation radius R0.

In this case, it is assumed that no tangential stresses exist in 
the plastic region (τrθ = 0), making the stress state axisymmetric.

Figure 1. Calculation scheme for solving the problem  
of equilibrium of a rock mass in the vicinity of a single horizontal 
excavation (Mirsalimov and Hasanov, 2022)
Rysunek 1. Schemat obliczeniowy do rozwiązania problemu  
równowagi górotworu w pobliżu pojedynczego wyrobiska  
poziomego (Mirsalimov i Hasanov, 2022)
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Let us denote the stress components in the plastic region 
with the index 1 placed on top, and the stresses in the elastic 
region without an index.

The boundary conditions are then defined as follows:
On the development contour:

	 τ σθr R R r R R
p1 1
0

0 0

0
= =

= = 	 (4)

At infinity:

	 σ λγ σ γ τx y xyH H∞ ∞ ∞= = = 0 	 (5)

At the boundary L between the plastic and elastic regions, 
the stresses are continuous:

	 σ σ σ σ τ τx x y y xy xy
1 1 1= = = 	 (6)

A certain strength reduction function f (r) is introduced 
into the strength condition, which defines how the strength 
of rocks in uniaxial compression or adhesion changes around 
the excavation, depending on the relative radius r (r = R/R0, 
where R0 is the working radius and R is the current radius).

The principle for selecting an analytical expression for the 
strength reduction function is essentially uniform. For exam-
ple, in the “σ – r” coordinate system, experimental data are 
approximated by a monotonic curve, the ordinates of which 
increase from a value near or equal to zero at the excavation 
boundary to the intact rock strength Rc at the interface between 
the plastic and elastic regions. To varying degrees, known 
analytical expressions for the strength reduction function fol-
low this principle. It is evident, however, that if the initial 
physical model assumes the rock medium to be continuous, 
then the form of the function f (r) must reflect this assumption. 
In particular, in both the plastic and elastic regions, the stress 
function F(r) must be biharmonic. Then it will have a single 
specific expression.

To determine the type of strength reduction function, we 
proceed as follows. Let us express the initial relations in polar 
coordinates. The equations of equilibrium and compatibility 
of deformations are given as (Timoshenko, 1975; Mirsalimov 
and Hasanov, 2022):
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where:
r, θ – polar coordinates.

We express the robustness condition in a general form:
	 ( ) ( )σ σ τθ θ− + =r r k f r2 2 2 24 4 	 (10)

where:
k – a constant dependent on the initial physical parameters 

in the robustness condition.

Let us define the stress function so that the following rela-
tions hold in the plastic region:

	 σ σ τθ θr rr
dF
dr

d F
dr

= = =
1 0

2

2 	 (11)

It is clear that the stress function in this form always satis-
fies the equilibrium equations.

To determine the analytical expression for the strength 
reduction function, substitute equations (11) into equations 
(9) and (10), yielding the system:

	 1 2
2

2r
dF
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d F
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kf r− = ± ( ) 	 (12)

	 ∇∇ =F 0 	 (13)
where:
∇ – Laplace operator.

Solving equation (12) using the method of variation of 
constants, we obtain the following expression for the stress 
function:

	 F r kr f r r dr k rf r dr C r C( ) ( ) ( )= ⋅ − + +∫ ∫−2 1
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where:
C1 and C2 – arbitrary integral constants.

To determine stress components in the plastic region, we 
use the stress function F(r), related through equations (11), 
and defined by (12):
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Applying the second boundary condition on the excavation 
contour (4), we find the value of the integration constants:
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0= + = 	 (16)

Substituting (16), into (15), we obtain:
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Using expression (17) and formula (15), the stress compo-
nents in the plastic region become:
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Kolosov-Mushkelishvili relations for the elastic zone 
(Muskhelishvili, 1966; Mirsalimov and Kalantarly, 2021):

	 σ σx y z+ = 4ReΦ ( ) 	 (19)

	 σ σ τx y xyi z zz− + = +[ ]′2 2 Φ Ψ( ) ( ) 	 (20)

	 2 3 4G u iv z dz z z z dz( ) ( ) ( ) ( ) ( )+ = − − −∫ ∫µ Φ Φ Ψ 	(21)

where:
Φ(z) and Ψ(z) – Z(z = rei ψ) – analytic functions of the com-

plex plane,

	 G E
=

+2 1( )µ
where: G – displacement modulus, E – Young’s modulus,  

µ – Poisson’s ratio, radial and tangential components 
of u and v – displacements, respectively; z = x + iy.

Let us transform formulas (19) and (20) from Cartesian to 
polar coordinates, taking into account that τ θr

( )1 0= :
	 σx + σy = σr + σθ	 (22)
	 σy – σx + 2iτxy = (σθ – σr)e–2iθ

Then, according to statements (6), (18) and (22), the fol-
lowing relations will be true for contour L:

	
4 2 2 1 2

2

0

2

ReΦ

Φ Ψ

( ) ( )

( ) ( )

z k A P
k

B r

z z k A
r

B ez

= + − +





+ = −





′

ln

−−2iθ
	 (23)
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To solve the boundary value problem, we apply the method of 
Cherepanov, set out in the work of Sokolov (1948). We transition 
to the parametric plane of the complex variable ζ via the trans-
formation Z = ω(ζ). Let us set φ(ξ) = Φ[ω(ξ)], ψ(ξ) = Φ[ω(ξ)]. In  
the adopted notation, using the conjugation condition on L (6), 
we obtain on the plane ξ the following boundary value problem 
for determining three unknown functions φ(ξ), ψ(ξ), ω(ξ):
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If | ξ | → ∞
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	 ω(ξ) = O(ξ)	 (29)

In the extended plane ξ, consider the functional equation:
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The solution is sought in the following form:

	 ω ξ ξ
ξν( ) = +








C P3
1 	 (31)

where Pν(1/ξ) is a polynomial of degree v with undetermi-
ned coefficients.

By formally substituting expression (31) into the main 
equation (30) and expanding all functions into a series in the 
neighborhood of the point at infinity, we find v = 1, hence:

	 ω ξ ξ
ξ

( ) = +C C
3

4 	 (32)

where:
C3, C4 – real unknown constants from the symmetry condi-

tion.

To find these constants, consider the functional equation 
(25) in the extended plane ξ. Let us denote its right side by  
f (ξ), the exterior of the unit circle with contour L1 by S 

–, and 
the interior of the unit circle by S 

+. Then equation (25) will 
take the form:
	 ϕ ξ ϕ ξ ξ( ) ( ) ( )+ = f 	 (33)

Multiplying each term of expression (33) by the Cauchy 
kernel and integrating over the contour yields:
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where: z Î S 
–, ξ Î L1.

Since ϕ(ξ) is holomorphic outside the contour L1 and dis-
continuous on the contour L1, and the boundary value of the 
function z → ξ as ϕ(z), we get that expression (34) is equal to 
the first term:

	 1
2

0
1

π
ϕ ξ
ξ

ξ
i z

d Z S
L
∫ −

= ∀ ∈ −( ) , 	 (35)

In this case, the function φ(ξ) satisfies the conditions of 
Cauchy’s theorem (Lavrentiev and Shabat, 1973) for an in-
finite domain. Therefore, the second term of expression (34) 
is equal to:

	 1
2

1
π

ϕ ξ
ξ

ξ ϕ ϕ
i Z

d Z
L
∫ −

= − + ∞
( ) ( ) ( ) 	 (36)

If a function f (z) is holomorphic at S 
– and discontinuous at 

(S 
– + L1), then it is possible that the finite points a1, a2, a3, ..., a4  
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of this domain, and also excluding the point z = ∞, where G1(z), 
G2(z), ..., Gn(z), G∞(z) are poles can, then it can be shown as 
follows.

If the function f (z) is holomorphic in S 
–, continuous in 

(S 
– + L1) except, perhaps, at the end points a1, a2, a3, ..., a4 

of this region, as well as at z = ∞, where it may have a pole 
with main parts G1(z), G2(z), ..., Gn(z), G∞(z) then it can be 
represented as follows:
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Let’s expand the right side of equation (34):
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The first two expressions in (39) satisfy the conditions (37) 
and (38), therefore:

	

1
2

2

2

2

2

2

2

1

0

0 0

π ξ
ξ

i

A B P
k
z

d

A B P
k

A B P
k

L
∫

− +

−
=

=
− − +






+

− +






=

( )

00

1
2

1

3
3

if z

i z
d G z C z

C zL

→∞

−
= + = − + = −∫ ∞π

ω ξ
ξ

ξ ω ω ωln ( ) ln ln ln ln( )

The third term in expression (39) is equal to zero for the 
same reason as (35). Thus, we get:

	 − + ∞ = − ∀ ∈ −ϕ ϕ ω( ) ( )( ) lnz z
C z
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From the boundary condition (27) as z → ξ for the func-
tion φ(ξ) we find:
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It follows from the equation (30) that:
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Considering this:
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We get:
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Thus, the posed problem is solved exactly up to the con-
stants of integration.

Note that as ξ → ∞ ψ(ξ) = –kB(C4/C3). On the other hand, 
from (28) it follows that as ξ → ∞ ψ(ξ) = 0.5γH(1 – λ). Equating 
these two expressions, we get:

	 C C H
Bk4 3
1
2

=
−γ λ( ) 	 (44)

According to the mean value theorem for harmonic 
functions:

	
L

d∫
+

=
ϕ ξ ϕ ξ

ξ
ξ( ) ( )

2
0 	 (45)

Let us conjugate the function of (41) and integrate Re f (ξ)  
according to (45). We perform the same procedure for equa-
tion (42).

Equating the resulting expressions, we find the constant C3:

	 C A
B

H
Bk

P
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0

2 4
1

2
1
2

= − + + −




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Thus, integral constants are determined. The L boundary 
between the elastic zone and the collapse zone is an ellipse 
whose equation is as follows.
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where β γ λ
=

−H
Bk
( )1
2

For the considered one-dimensional problem, the initial 
relations in the polar coordinate system are written as follows:
•	 	equilibrium equation:

	 d
dr r
r rσ σ σθ−

−
= 0 	 (48)

•	 	equation of constancy of deformation:

	 d
dr r

d
dr r

d
dr
r

2

2
2 1 0ε ε εθ θ+ ⋅ − ⋅ = 	 (49)

•	 	Hooke’s relations:

	 ε µ σ µσθr rG
= − −[ ]1
2

1( ) 	 (50)

	 ε µ σ µσθ θ= − −[ ]1
2

1
G r( ) 	 (51)
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•	 	Cauchy relations:

	 ε εθr
dU
dr

U
r

= = 	 (52)

where:
σr, σθ and εr, εθ – radial and tangential components of stres-

ses and strains, respectively,
U – radial displacement,
G – displacement modulus,
µ – Poisson’s ratio,
r – polar coordinate. 

Here and below, all quantities that have the dimension of 
length and displacement are still referred to the excavation 
radius R0. The boundary conditions and matching conditions 
are defined as follows:
                                 σr = σθ = γH    r → ∞	 (53)
	 σr = P0             r = 1	 (54)
 	 σ σr r r r LU U r r= = =( ) ( ),1 1 	 (55)

All components of stresses and displacements are denoted 
without an index in the elastic zone, and with index (1) in the 
plastic region.

Solving the Euler equation obtained from the expression 
(53) and satisfying the boundary conditions (49), we obtain the 
following formulas for the stress components in the elastic zone.

	 σ γ σ γθr H C
r

H C
r

= − = +2 2 	 (56)

where C – unknown integration constant determined from 
the conditions of conjugation of radial stresses on the 
contour L (55).

In the zone of inelastic deformations, the following physi-
cal equation is valid:

	 σ σθ − = −





r k A

r
B2 2 	 (57)

where:
k – a constant depending on the initial physical conditions 

included in the strength condition. In our case, it is 
defined by the expression σ1 – σ3 = 2k,

A and B – fixed numbers, determined based on the following 
expressions.

	 A r
r

k B r k
r

L

L
ocm

L ocm

L

=
−

− =
−
−

2

2

2

21
1

1
( ) 	 (58)

where:
rL – dimensionless radius of the inelastic deformation zone,
kocm – residual strength factor.

Solving this equation together with the equilibrium equation 
(48), and considering the boundary conditions (54), we obtain 
expressions for the stress components in the plastic region:

	 σ r k A r B r P( ) . ( )1 2
02 0 5 1= − − +  +

− ln 	 (59)

	 σθ
( ) . ( )1 2

02 0 5 1= − + +  +
−k A r B r Pln 	 (60)

Considering the equality of the radial stresses determined 
by formulas (56) and (59) for r = rL, the value of the unknown 
integral constant is found to be C krL= 2.

Thus, the stress components in the elastic and plastic zones 
are determined. Then, using expressions (55), (59), we obtain 
a transcendental expression for determining the radius of the 
zone of inelastic deformations:

	 0 5 1
2

1
2

2 0. ( )A r B r H P
kL L

− − + =
−

−ln γ
	 (61)

From the expression (61) it follows that, firstly, the pro-
tection of support P0 has a negligible effect on the size of the 
inelastic deformation region, since its value at deep mine levels 
γH is much smaller than the gravity pressure. Accordingly, we 
can define P0 = 0 in formula (61) without loss of accuracy. 
Secondly, for the most coal-bearing rocks, the value of ψ 
included in the following expression is approximately 0.1.

From (61) it follows, firstly, that the resistance of the sup-
port P0 has an extremely small effect on the size of the region 
of inelastic deformations, since its value at the deep mine 
levels is incomparably smaller than the gravitational pres-
sure γH. In this regard, we can set P0 = 0 in formula (61) 
without compromising accuracy. Secondly, for the vast ma-
jority of coal-bearing rocks, the value ψ in the expression 
( ) ( ) ( )σ σ τ ψ ψ σ σx y xy C C x yR R− + − − − + =2 2 24 1 0  is approxi-
mately 0.1. If we set it equal to zero, the error from such an 
idealization will not exceed 5%. 

If ψ = 0, the error from such an idealization will not ex- 
ceed 5%.

Figure 2. Calculation scheme for solving the problem  
of equilibrium of a rock mass in the vicinity of a single horizontal 
excavation (Mirsalimov i Hasanov, 2022)
Rysunek 2. Schemat obliczeniowy do rozwiązania problemu  
równowagi górotworu w pobliżu pojedynczego wyrobiska  
poziomego (Mirsalimov and Hasanov, 2022)
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Based on the analysis of the dependency r f R k HL c c= ( )γ  
for different values of the residual strength coefficient kocm, 
presented in the study of Shashenko et al. (2001), we assume 
kocm = 0. Then, based on expression (54), the following formula 
derived from equation (60) is used to determine the radius of 
the inelastic deformation zone:

	
r r
r

H
R k

L L

L c c

2

2 1
ln
−

=
γ

	 (62)

Using the Cauchy relations (52) and the smoothing func-
tion f '(r)= 1 + B – Ar–2, taking assuming that εr + εθ = εv, the 
following inhomogeneous differential equation is obtained:

	 dU
dr

U
r

B A
r

+ = + +





εν

* 1 2 	 (63)

where:
εv

* – limiting volumetric strain under uniaxial compression 
conditions.

The solution of the corresponding homogeneous equation 
has the following form:
	 U = C · r–1	 (64)

Taking into account the equality of radial displacements in 
the contour L and changing the constant yields the following 
expression for determining displacements in the plastic region:

	 U
r
B r r A r

r
v

L
L

= + ⋅ − −










ε * ( ) ( )
2

1 22 2 ln 	 (65)

Considering kocm = 0 in expressions (62) and (58), we obtain 
the following expression for determining displacements along 
the contour of the excavation:

	 U H
R kv
c c

0 0 5= −








ε γ* . 	 (66)

The main dependencies for determining the elastic-plastic 
state parameters of the rock mass in the vicinity of a single 
excavation, obtained above in (62) and (66), make it possible 

Figure 3. Configurations of zones of inelastic deformation at different degrees of heterogeneity of the rock mass: I – homogeneous rock 
mass; II – massif including a coal seam; III – layered massif
Rysunek 3. Konfiguracje stref deformacji niesprężystej przy różnym stopniu niejednorodności górotworu: I – jednorodny górotwór;  
II – masyw, w tym pokład węgla; III – masyw warstwowy
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to determine the point values of probabilistic quantities: the 
radius of the inelastic deformation region rL, and the radial 
displacement on the excavation contour U0.

Let us determine the radius of the inelastic deformation 
zone and the magnitude of displacements along the excavation 
contour under the following average initial conditions:
•	 	excavation depth, H = 350 m; 
•	 	uniaxial compressive strength, σc = 25 MPa; 
•	 	bulk density, γ = 2.50 · 10–3 MH/m3;
•	 	excavation radius, Rc = 2.0 m; 
•	 	coefficient of structural-mechanical weakening, kc = 0.33; 
•	 	limiting volumetric deformation under uniaxial compres-

sion, εv
* .= −0 1 .

According to expressions (62) and (66), under these condi-
tions, we obtain: 
	 rL = 2.3, and U0 = 0.38 m

Analysis of Figure 3 reveals a significant influence of the 
rock properties and the structure of the massif surrounding 
the excavation on the formation of the inelastic deformation 
zone, and, consequently, on the stability of the excavation. 
This effect is especially pronounced under conditions of soil 
extrusion (Figure 3d, e, f), where a reduction in the size of the 
inelastic deformation zone is observed in the case of a layered 
massif (Shashenko et al., 2008).

Conclusion

The final expressions of the solution are highly complex, 
which complicates their research and practical applications. 
It is concluded that within the upper layer of the lithosphere, 
where mining is typically conducted, in horizontally bedded 
sedimentary rocks and under a wide range of mining and 
geological conditions, the stress distribution in the undisturbed 
rock mass may be assumed to be hydrostatic, i.e. λ = 1. In this 
case, the solution to the formulated problem is considerably 

simplified, as the elliptical contour degenerates into a circle. The 
corresponding calculation scheme used to solve the problem 
is presented in Figure 2.
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