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Numerical solutions of elastoplastic problems with application
to underground mining stability

Numeryczne rozwigzania zagadnien sprezysto-plastycznych z zastosowaniem
w analizie stabilno$ci wyrobisk podziemnych

Rafail K. Mehtiyev, Yusif A. Tanriverdiyev
Azerbaijan State Oil and Industry University

ABSTRACT: A limited area of plastically deformed rocks forms around underground workings due to a specific combination of the
strength of the main rock mass, its structure, and burial depth. The size of this zone and the magnitude of displacements along the
excavation boundary determine the stability of the excavation. Analytical solutions of elastic-plastic problems are typically limited to
simplified models of the medium (solid, isotropic, homogeneous) and excavation shape (circular). Mathematical modeling of elasto-
plastic deformation in a structurally heterogeneous rock mass weakened by complex-shaped underground workings is performed solely
using numerical methods, such as the finite element method (FEM). In this context, several challenges arise that necessitate a special
approach and reasonable assumptions regarding the validation of the deformation model. Uniformly distributed external loads are applied
at infinity along the X and Y axes, external, which may be either unequal (1 # 1) or equal (4 = 1) (4 is the lateral thrust coefficient). The
magnitude of these loads is sufficient to generate a plastic deformation zone completely enclosing the excavation boundary. Deformation
and failure of the rock mass occur under prescribed deformation conditions from the elastically compressed part of the massif. The
assumption of continuity of the medium is preserved in both elastic and plastic zones. Since rock mass movement along the longitudi-
nal axis of the excavation is restricted, the case of plane deformation is considered. To solve the problem, it is necessary to determine
stress, strain, and displacement components in both elastic and inelastic regions, as well as the size and shape of the boundary L that
separates them.
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STRESZCZENIE: Wokot wyrobisk podziemnych tworzy si¢ ograniczona strefa plastycznie odksztatconych skal, wynikajaca ze specy-
ficznego polaczenia wytrzymatosci gtdwnej masywu skalnego, jego struktury oraz glebokosci zalegania. Wielkos¢ tej strefy oraz warto$é
przemieszczen wzdhuz obrysu wyrobiska determinujg jego stateczno$¢. Analityczne rozwigzania zagadnien spr¢zysto-plastycznych sg
zazwyczaj ograniczone do uproszczonych modeli osrodka (ciggtego, izotropowego, jednorodnego) oraz ksztattu wyrobiska (kotowe-
g0). Matematyczne modelowanie odksztatcen sprezysto-plastycznych w strukturalnie niejednorodnym masywie skalnym ostabionym
wyrobiskami o ztozonym ksztalcie przeprowadza si¢ wylacznie z wykorzystaniem metod numerycznych, takich jak metoda elementéw
skonczonych (MES). W tym kontekscie pojawia si¢ szereg wyzwan, ktore wymagaja szczegdlnego podejsécia i przyjecia racjonalnych
zatozen dotyczacych walidacji modelu odksztalcen. Na nieskonczonosci przytozone sa rownomiernie roztozone obcigzenia zewngtrzne
wzdhuz osi X'i Y, ktore mogg by¢ nierowne (A # 1) lub rowne (4 = 1) wzgledem siebie, gdzie 1 oznacza wspotczynnik parcia bocznego.
Warto$¢ tych obcigzen jest wystarczajaca do wygenerowania strefy plastycznej catkowicie otaczajacej obrys wyrobiska. Odksztatcenia
i zniszczenia masywu skalnego nast¢puja przy zadanych warunkach odksztatceniowych z cze¢éci masywu poddanego sprezystemu
Sciskaniu. Zatozenie cigglosci osrodka jest zachowane zar6wno w strefie sprezystej, jak i plastycznej. Poniewaz ruch masywu skal-
nego wzdtuz osi podtuznej wyrobiska jest ograniczony, rozpatruje si¢ przypadek ptaskiego stanu odksztatcenia. W celu rozwigzania
zagadnienia konieczne jest wyznaczenie skladowych naprezen, odksztalcen i przemieszczen w strefach sprezystej i niesprezystej, jak
rowniez okreslenie wielkos$ci i1 ksztattu rozdzielajacej je granicy L.

Stowa kluczowe: wyrobiska podziemne, masyw skalny, rozwigzania analityczne, zagadnienia sprezysto-plastyczne.
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Introduction

In general, the collapse of rock masses occurs under the
influence of a complex stress state, characterized by a combina-
tion of compressive, tensile, and shear stresses. Objective data
can be obtained by considering the physical laws governing
the scattering process. However, the development of rigorous
analytical methods is invariably associated with (sometimes
controversial) assumptions and idealization of the rock, due to
the complexity and uncertainty of real collapse mechanism. This
often results in significant deviations between calculated indi-
cators and actual values. Nevertheless, the analytical approach
is superior because it allows consideration of physical laws
that operate objectively in nature. A limited area of plastically
deformed rocks forms around underground workings, due to
specific combination of the strength of the main rock mass, its
structure, and burial depth (Chouly and Hild, 2022; Pengpeng
and Jun, 2023). The size of this zone and the magnitude of
displacement along the excavation boundary determine its
stability. Analytical solutions of elastic-plastic problems are
typically limited to simplified models of the medium (continu-
ous, isotropic, homogeneous) and excavation shape (circular).

The presence of holes, grooves, recesses and other similar
structural or technological formations induces stress concen-
trations. Plastic deformation zones arise near excavations and
openings under sufficiently high external loads. Taking into
account plastic zones is especially important in calculating the
strength of structures. The complexity of elastoplastic problems
lies in the fact that the shape and extent of the plastic region
are unknown a priori and must be determined (Hasanov et al.,
2020). Existing solutions for plane elastoplastic problems in
isotropic bodies with circular holes are associated with full
coverage of the circular hole by the plastic deformation region.
In such cases, the corresponding mathematical problem of an
ideal plastic body is typically reduced to a boundary value prob-
lem for a biharmonic equation in a domain with an unknown
boundary (Wu et al., 2020; Mirsalimov and Kalandarly, 2021).

Problem Statement

Let us consider the stress-strain state of a homogeneous,
isotropic, elastic rock mass near a long, single horizontal ex-
cavation of circular cross-section, located at a depth H below
of the earth's surface and not influenced by mining operations
(Figure 1). The excavation has a radius R,, and a uniformly
distributed load of intensity P,, equal to the support resistance,
is applied to its contour. The rock medium, with a compressive
strength R, is assumed to be weightless within the zone of
influence of the excavation. The greater the excavation depth,
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Figure 1. Calculation scheme for solving the problem
of equilibrium of a rock mass in the vicinity of a single horizontal
excavation (Mirsalimov and Hasanov, 2022)

Rysunek 1. Schemat obliczeniowy do rozwigzania problemu
réwnowagi gérotworu w poblizu pojedynczego wyrobiska
poziomego (Mirsalimov i Hasanov, 2022)

the smaller the error resulting from such an idealization; as
shown by Mikhlin (1934) and Erzhanov (1959), this error
does not exceed 1%.

The most complex case occurs when the external loads
along the horizontal and vertical axes are unequal, i.e., when
the lateral thrust coefficient 4 is not equal to one (4 # 1).

The calculation scheme shown in Figure 1 is quite general.
When tangential stresses exist at infinity (for example, due
to neotectonics), the coordinate axes can always be oriented
along the main stress directions. Consequently, the stress dis-
tribution at infinity will correspond to the assumptions made
in the problem.

At an arbitrary point in the rock mass with coordinates
Xand Y, the stress components satisfy the equilibrium equations:

0 0 0
60—)( n Txy _ Gy + Txy =0 (1)
Ox oy oy ox
the condition of compatibility of deformations:
o> o
—+— |x(o,+0,)=0 )
( PP J ( ¥)

In the plastic deformation zone, the physical equation is
given as:

Gy +0, :21{%—3) 3)

-
where: r, § — polar radius and angle, respectively,

A, B — constants as determined by equation (58).

Here and below, all length and displacement quantities are
related to the excavation radius R,.

In this case, it is assumed that no tangential stresses exist in
the plastic region (z,, = 0), making the stress state axisymmetric.
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Let us denote the stress components in the plastic region
with the index 1 placed on top, and the stresses in the elastic
region without an index.

The boundary conditions are then defined as follows:

On the development contour:

1 1
T, =0 o =
ro R=R, VR:RO pO

“
At infinity:

oy =AyH o;=yH 1,=0 %)

At the boundary L between the plastic and elastic regions,
the stresses are continuous:

(6)

A certain strength reduction function f(#) is introduced
into the strength condition, which defines how the strength
of rocks in uniaxial compression or adhesion changes around
the excavation, depending on the relative radius » (» = R/R,,
where R, is the working radius and R is the current radius).

The principle for selecting an analytical expression for the
strength reduction function is essentially uniform. For exam-
ple, in the “o — 7 coordinate system, experimental data are
approximated by a monotonic curve, the ordinates of which
increase from a value near or equal to zero at the excavation
boundary to the intact rock strength R, at the interface between
the plastic and elastic regions. To varying degrees, known
analytical expressions for the strength reduction function fol-
low this principle. It is evident, however, that if the initial
physical model assumes the rock medium to be continuous,
then the form of the function f{r) must reflect this assumption.
In particular, in both the plastic and elastic regions, the stress
function F(r) must be biharmonic. Then it will have a single
specific expression.

To determine the type of strength reduction function, we
proceed as follows. Let us express the initial relations in polar
coordinates. The equations of equilibrium and compatibility
of deformations are given as (Timoshenko, 1975; Mirsalimov
and Hasanov, 2022):

do, 101, L%:=% _, 7
or r 06 r
1o, N 07,9 N 27,9 _0 )
r 00 or r
# 10 1 0
[l T + =0 9
[61’2 ror 12 aezj (@ +07) ©)

where:
r, 8 — polar coordinates.

We express the robustness condition in a general form:
(09 —0,)" +417 =4k> 2 (r) (10)
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where:
k — a constant dependent on the initial physical parameters
in the robustness condition.

Let us define the stress function so that the following rela-

tions hold in the plastic region:
2
VZ%L;_I; Gez% T,9=0 an

It is clear that the stress function in this form always satis-
fies the equilibrium equations.

To determine the analytical expression for the strength
reduction function, substitute equations (11) into equations
(9) and (10), yielding the system:

1dF d°F

—_—— =12 12

rdr  dr? ¥ (12)
VVF =0 (13)

where:
V — Laplace operator.

Solving equation (12) using the method of variation of
constants, we obtain the following expression for the stress
function:

Fry=la? [ f(r)-r'dr =k [1f (r)dr+ Cr* + C, (14)

where:
C, and C, — arbitrary integral constants.

To determine stress components in the plastic region, we
use the stress function F(r), related through equations (11),
and defined by (12):

F(l’)=21{r2(cl +§)—§r2 Inr— ;(lnr+ 1}} (15)

+Crt+C,
Applying the second boundary condition on the excavation
contour (4), we find the value of the integration constants:

c=1b,4 (16)

2k 4
Substituting (16), into (15), we obtain:

F(r) = 2/{2(/1 §+PJ gzlnr—g(lnr+éﬂ (17)

C,=0

2 2 k

Using expression (17) and formula (15), the stress compo-
nents in the plastic region become:

=2k (1—%]—3111”5
2 r 2k
2
<1>——d =2k ( %)—B(lnr+1)+i
dr* 2k

1 _
7,9 =0

ra’r

(18)



Kolosov-Mushkelishvili relations for the elastic zone
(Muskhelishvili, 1966; Mirsalimov and Kalantarly, 2021):

(19)
(20)

0,+0,=4Re®(z)

0,0, +2it,, =2[Z0'(2)+¥ (2)]

2G(u+iv)=(3-4pu) jcp(z)dz —z0(z)- j'P(z)dz @21

where:
@(z) and ¥(z) — Z(z = re'") — analytic functions of the com-
plex plane,
_E
2L+ p)

where: G — displacement modulus, £ — Young’s modulus,
1 — Poisson’s ratio, radial and tangential components
of u and v — displacements, respectively; z =x + iy.

Let us transform formulas (19) and (20) from Cartesian to

polar coordinates, taking into account that rﬁg =0:
o, to,=0,+0, (22)
O-y — 0y + 2iz’xy = (0-0 - O-r)67216

Then, according to statements (6), (18) and (22), the fol-
lowing relations will be true for contour L:

4Re®(z) = 21{2/1 + % ~B(1+ 21nr)}

Bj e—2[9

D(z)= i(a)‘f +07)+0(z7)

4 (23)
Z0'(2)+¥ (z) = 21{—2 -
"

If |z|—>oo

X (24)
¥(2)=5 (07 —o)+0(z7)

To solve the boundary value problem, we apply the method of
Cherepanov, set out in the work of Sokolov (1948). We transition
to the parametric plane of the complex variable { via the trans-
formation Z = w((). Let us set (&) = D[w(E)], w(&) = P[w($)]. In
the adopted notation, using the conjugation condition on L (6),
we obtain on the plane £ the following boundary value problem
for determining three unknown functions ¢(&), w(&), w(&):

(&) + (&) =k(A—B+2%j—2kBln~/m(§)-@ (25)

(@) _ —B[w(f;y@] e
o )" "E)+y (€)= W lg|=1 (26)

If | €] — oo |
p(&)=7 (7 +07)+0(E7) (27)
V(=17 ~a7)+0E™) (28)
(&) = 0(&) (29)
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In the extended plane £, consider the functional equation:

o]

') -
= 30
(@) [éj VO e GO
The solution is sought in the following form:
w(é)=Cgé+E[éJ (1)

where P (1/£) is a polynomial of degree v with undetermi-
ned coefficients.

By formally substituting expression (31) into the main
equation (30) and expanding all functions into a series in the
neighborhood of the point at infinity, we find v =1, hence:

C
o(c)=Cye + ?4 (32)
where:
C,, C, —real unknown constants from the symmetry condi-
tion.

To find these constants, consider the functional equation
(25) in the extended plane ¢. Let us denote its right side by
f(&), the exterior of the unit circle with contour L, by S~, and
the interior of the unit circle by S*. Then equation (25) will
take the form:

(&) +e()=f(5) (33)

Multiplying each term of expression (33) by the Cauchy
kernel and integrating over the contour yields:

<0(€) <p(§) /(&)
2i I‘g’ z 27r1 Ié z J dé 39
where:z€ §,¢€ L.

Since ¢(¢) is holomorphic outside the contour L, and dis-
continuous on the contour L,, and the boundary value of the
function z — £ as ¢(z), we get that expression (34) is equal to
the first term:

j‘p(é) dE=0VZeS (35)

2711

In this case, the function @(¢) satisfies the conditions of

Cauchy’s theorem (Lavrentiev and Shabat, 1973) for an in-

finite domain. Therefore, the second term of expression (34)
is equal to:

j o(€) )iz —-p(2)+p() (36)

27r1

If a function f{(z) is holomorphic at S~ and discontinuous at

(S™+L,), then it is possible that the finite points a,, a,, a;, ..., a4
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of this domain, and also excluding the point z = oo, where G,(z),

Gy(2), ...,

follows.

G,(2), G,(z) are poles can, then it can be shown as

If the function f{(z) is holomorphic in S~, continuous in
(S~ + L)) except, perhaps, at the end points a,, a,, a,, ..., a,
of this region, as well as at z = oo, where it may have a pole
with main parts G,(z), Gy(2), ..., G,(2), G.(z) then it can be

represented as follows:

: jf@ dz=-f(2)+G(2)+G,.(z) zeS (37)
27i
1 f©
27i ; I 4= (38)
:GI(Z)+G2(2)+...+Gn(z)+Gw(z) zeS”t
Let’s expand the right side of equation (34):
1/ (5)
2ri J.
2P
A-B+—°
L Lo VIS E)
271'le 2(E-2) 4ri i E-z
_2Bk J_ln o(5) dé

4ri

L §-z

The first two expressions in (39) satisfy the conditions (37)
and (38), therefore:

1 A—B+ﬁ
— k_ge -
27ULI 2(&-2)
_(A_BJrzl]:O) (A B+2]]:°j
_ 5 + =0 if z>ow
1 J'lnw(é)dé lna)JrGDO(Z)=—1nco+1nC3z=—1I1i
i E—z Csz

The third term in expression (39) is equal to zero for the
same reason as (35). Thus, we get:

2

3Z

—(z) + () = VzeS™ (40)

From the boundary condition (27) as z — ¢ for the func-
tion ¢(¢) we find:

(41)

1
Bl — | (@2
”(5) “

0(£) =025y H(1+A)— BkIn “’C(f;

It follows from the equation (30) that:
A-Blo@)-0©)] ¢
[0(©)] ®'(§)

w(&)=2k
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Considering this:
C (1) G ey C,
o(§)= C3§+§ (5} £ +C4,0'(8) —§(C3§2+C4)
We get:
A-B|C?+C}+C,C,(E* +&E72)
v(E)=2k [232 — I
C £ +C§ +2C3C4 (43)
C W(CE2+Cy)
et -G

Thus, the posed problem is solved exactly up to the con-
stants of integration.

Note that as & — oo (&) =—kB(C,/C;). On the other hand,
from (28) it follows that as & — oo (&) = 0.5yH(1 — 4). Equating
these two expressions, we get:

¢, =, 7H0=2)
2Bk

According to the mean value theorem for harmonic

(44)

functions:
p&)+(6) ;. _
[ BT dé=0 (45)

Let us conjugate the function of (41) and integrate R, f(¢)
according to (45). We perform the same procedure for equa-

tion (42).
Equating the resulting expressions, we find the constant C;:
A yH P 1
Cy=exp| ————(1+1)+-2L—— 46
3 p[ZB YAy 2} (46)

Thus, integral constants are determined. The L boundary
between the elastic zone and the collapse zone is an ellipse
whose equation is as follows.

X? Y?
C2a+py  CU+pY @7
yH(1-2)

where 8 =
P 2Bk
For the considered one-dimensional problem, the initial
relations in the polar coordinate system are written as follows:
* equilibrium equation:

do, % =%, _g (48)
dr r
* equation of constancy of deformation:
2
diﬂ 2 dey 1 de, (49)
dr rodr r dr
* Hooke’s relations:
1
e, =—|(0-wo, - uoc 50
=56l —poy] (50)
69 = —=[(1- W)y ~ 10, | 51)
2G



Figure 2. Calculation scheme for solving the problem
of equilibrium of a rock mass in the vicinity of a single horizontal
excavation (Mirsalimov i Hasanov, 2022)

Rysunek 2. Schemat obliczeniowy do rozwigzania problemu
réwnowagi gorotworu w poblizu pojedynczego wyrobiska
poziomego (Mirsalimov and Hasanov, 2022)

» Cauchy relations:
_du

& =— £
o
" odr

2 (52)

-

where:

o, 0,and ¢, ¢,— radial and tangential components of stres-
ses and strains, respectively,

U - radial displacement,

G — displacement modulus,

1 — Poisson’s ratio,

r — polar coordinate.

Here and below, all quantities that have the dimension of
length and displacement are still referred to the excavation
radius R,. The boundary conditions and matching conditions
are defined as follows:

g,=0,=YH r— o (53)
0,=P, r=1 (54)
o.=c,, U =U" r=n (55)

All components of stresses and displacements are denoted
without an index in the elastic zone, and with index (1) in the
plastic region.

Solving the Euler equation obtained from the expression
(53) and satisfying the boundary conditions (49), we obtain the
following formulas for the stress components in the elastic zone.

O'r=]/H—£

C

> o,=yH+— (56)
r r

where C — unknown integration constant determined from

the conditions of conjugation of radial stresses on the

contour L (55).
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In the zone of inelastic deformations, the following physi-
cal equation is valid:

c,—0, = 21{(£2 —Bj (57)

-

where:

k — a constant depending on the initial physical conditions
included in the strength condition. In our case, it is
defined by the expression o, — g, = 2k,

A and B — fixed numbers, determined based on the following
expressions.

ok gt

ocm 2
1-7

A= (58)

-7
where:
r, — dimensionless radius of the inelastic deformation zone,
k.., — residual strength factor.

Solving this equation together with the equilibrium equation
(48), and considering the boundary conditions (54), we obtain
expressions for the stress components in the plastic region:

o" ==2k[0.54(+ ~1)+ Blor |+ B, (59)

oy ==2k[ 0.54(+" +1)+ Blr |+, (60)

Considering the equality of the radial stresses determined
by formulas (56) and (59) for r = r,, the value of the unknown
integral constant is found to be C =k’

Thus, the stress components in the elastic and plastic zones
are determined. Then, using expressions (55), (59), we obtain
a transcendental expression for determining the radius of the
zone of inelastic deformations:

P 1

0.54(r,> 1)+ Blnr, = VHZ—; > (61)

From the expression (61) it follows that, firstly, the pro-
tection of support P, has a negligible effect on the size of the
inelastic deformation region, since its value at deep mine levels
yH is much smaller than the gravity pressure. Accordingly, we

can define P, = 0 in formula (61) without loss of accuracy.
Secondly, for the most coal-bearing rocks, the value of
included in the following expression is approximately 0.1.

From (61) it follows, firstly, that the resistance of the sup-
port P, has an extremely small effect on the size of the region
of inelastic deformations, since its value at the deep mine
levels is incomparably smaller than the gravitational pres-
sure yH. In this regard, we can set P, = 0 in formula (61)
without compromising accuracy. Secondly, for the vast ma-
jority of coal-bearing rocks, the value y in the expression
(0,—0,) +4t. —Rly —(1-y)R.(0,+0,)=0 is approxi-
mately 0.1. If we set it equal to zero, the error from such an
idealization will not exceed 5%.

If w = 0, the error from such an idealization will not ex-
ceed 5%.
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Based on the analysis of the dependency r, = f(R.k./yH)
k,

presented in the study of Shashenko et al. (2001), we assume
k,en = 0. Then, based on expression (54), the following formula

derived from equation (60) is used to determine the radius of
the inelastic deformation zone:

for different values of the residual strength coefficient

2
r;lnr,

2
r,—1

v
RC kC

(62)

Using the Cauchy relations (52) and the smoothing func-
tion f'(r)= 1 + B — Ar*, taking assuming that ¢, + ¢, = ¢,, the
following inhomogeneous differential equation is obtained:

{rae)

du U
1+B+—
B
g, — limiting volumetric strain under uniaxial compression

—+—=¢

dr r (63)

where:

conditions.

elasto-plastic solution

b)

e)
swelling stage

The solution of the corresponding homogeneous equation
has the following form:

U=C-r' (64)

Taking into account the equality of radial displacements in

the contour L and changing the constant yields the following

expression for determining displacements in the plastic region:

2r

k

ocm

(B+1)-(r2—rL2)—2AlnL}
.

L

(65)
Considering k,.,, = 0 in expressions (62) and (58), we obtain
the following expression for determining displacements along
the contour of the excavation:

(66)
The main dependencies for determining the elastic-plastic

state parameters of the rock mass in the vicinity of a single
excavation, obtained above in (62) and (66), make it possible

a\\\\ —---x \ Se=s k a =F

\i\.\\ ‘|'1'|

|

Y ) l
A e |
L . 51 T P T 4 Y T W e e e | L

f)

Figure 3. Configurations of zones of inelastic deformation at different degrees of heterogeneity of the rock mass: I — homogeneous rock

mass; II — massif including a coal seam; III — layered massif

Rysunek 3. Konfiguracje stref deformacji niesprezystej przy réznym stopniu niejednorodnosci gérotworu: I — jednorodny goérotwor;

IT — masyw, w tym poktad wegla; III — masyw warstwowy
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to determine the point values of probabilistic quantities: the
radius of the inelastic deformation region r,, and the radial
displacement on the excavation contour U,

Let us determine the radius of the inelastic deformation
zone and the magnitude of displacements along the excavation
contour under the following average initial conditions:

» excavation depth, H =350 m;

* uniaxial compressive strength, o. =25 MPa;

* bulk density, y = 2.50 - 10~ MH/m’,

» excavation radius, R, = 2.0 m;

» coefficient of structural-mechanical weakening, k., = 0.33;

 limiting volumetric deformation under uniaxial compres-
sion, &, =—0.1.

According to expressions (62) and (66), under these condi-
tions, we obtain:

r,=2.3,and Uy=0.38 m

Analysis of Figure 3 reveals a significant influence of the
rock properties and the structure of the massif surrounding
the excavation on the formation of the inelastic deformation
zone, and, consequently, on the stability of the excavation.
This effect is especially pronounced under conditions of soil
extrusion (Figure 3d, e, ), where a reduction in the size of the
inelastic deformation zone is observed in the case of a layered
massif (Shashenko et al., 2008).

Conclusion

The final expressions of the solution are highly complex,
which complicates their research and practical applications.
It is concluded that within the upper layer of the lithosphere,
where mining is typically conducted, in horizontally bedded
sedimentary rocks and under a wide range of mining and
geological conditions, the stress distribution in the undisturbed
rock mass may be assumed to be hydrostatic, i.e. A = 1. In this
case, the solution to the formulated problem is considerably

07/2025

simplified, as the elliptical contour degenerates into a circle. The
corresponding calculation scheme used to solve the problem
is presented in Figure 2.
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