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Wykorzystanie technik uczenia maszynowego  
do uszczegółowienia budowy strukturalnej utworów podłoża  
w brzeżnej strefie Karpat zewnętrznych
Utilizing machine learning techniques to reconstruct the structural framework  
of the basement formations in the marginal part of the Outer Carpathians
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STRESZCZENIE: Obraz sejsmiczny utworów mezo-paleozoicznego i neogeńskiego podłoża brzeżnej części Karpat zewnętrznych 
charakteryzuje się zazwyczaj zwiększonym poziomem szumu, jak również obecnością artefaktów sejsmicznych, co znacznie obniża 
wiarygodność interpretacji strukturalnej tych utworów. Głównym celem niniejszej pracy jest zastosowanie dostępnych w oprogra-
mowaniu Petrel narzędzi uczenia maszynowego do poprawy ciągłości refleksów sejsmicznych w strefie pod nasunięciem Karpat, na 
przykładzie rejonu usytuowanego pomiędzy Dębicą a Rzeszowem (południowa Polska), a w konsekwencji bardziej wiarygodne odtwo-
rzenie budowy strukturalnej tego rejonu. Techniki uczenia maszynowego najczęściej stosowane są w celach klasyfikacji, grupowania 
i prognozowania różnego rodzaju danych, przy czym warto zaznaczyć, że wykorzystanie algorytmów machine learning do operacji 
prowadzonych na danych odzwierciedlających zjawiska naturalne wymaga szerokiej wiedzy regionalnej w celu selekcji potencjalnych 
wyników, które mogą być nierzeczywiste. W badaniach prezentowanych w niniejszym artykule zastosowano nienadzorowane uczenie 
maszynowe wykorzystujące algorytm samoorganizujących się map (SOM), bazujące na zbiorze danych wejściowych w postaci wolu-
menów sejsmicznych 3D, zaimplementowanych do modelu w wersjach wybranych atrybutów sejsmicznych. Za pomocą wspomnianego 
algorytmu zredukowano wielowymiarowość danych kilku atrybutów sejsmicznych do dwuwymiarowej struktury. W końcowym etapie 
prac, poprzez zastosowanie modelu sklasteryzowanego zapisu sejsmicznego, przeprowadzono analizę otrzymanych wyników w celu 
wyeksponowania w obrazie sejsmicznym granic strukturalnych i tektonicznych charakterystycznych dla analizowanych formacji 
skalnych. Dzięki zastosowaniu sieci neuronowych i algorytmu SOM udało się uzyskać obraz sejsmiczny o zdecydowanie większej 
ciągłości refleksów sejsmicznych w porównaniu ze standardowym wolumenem sejsmicznym w wersji migracji czasowej po składaniu. 
Ponadto na podstawie uzyskanych wyników możliwe było bardziej szczegółowe określenie zasięgów przestrzennych poszczególnych 
bloków tektonicznych podłoża mezo-paleozoicznego i neoproterozoicznego, jak również odtworzenie dosyć szczegółowej morfologii 
powierzchni spągowej kenozoiku i głównych uskoków w obszarze badań.

Słowa kluczowe: nienadzorowane uczenie maszynowe, sieć neuronowa, samoorganizujące mapy (SOM), atrybuty sejsmiczne, inter-
pretacja strukturalna, podłoże Karpat.

ABSTRACT: The seismic image of Meso-Paleozoic and Neogene basement formations located under the marginal part of the Outer 
Carpathians is typically characterized by an increased noise level and the presence of seismic artifacts. This significantly decreases the 
reliability of structural interpretation for these formations in the mentioned zone. The main objective of this study was to apply machine 
learning tools available in Petrel software to improve seismic image under the frontal part of the Carpathians and obtain a more reli-
able reconstruction of the structural architecture of the region, based on the example of the Dębica–Rzeszów area (southern Poland). 
Machine learning techniques are most commonly used for classification, clustering, and predicting various types of data. It is worth noting 
that applying machine learning algorithms to operations performed on data reflecting natural phenomena requires extensive regional 
knowledge to identify potential results that may be unreal. This study utilized unsupervised machine learning with a Self-Organizing 
Map (SOM) algorithm, based on a 3D seismic volume input dataset, implemented into the model using selected seismic attributes. The 
SOM algorithm reduced the multidimensionality of several seismic attributes to a two-dimensional structure. In the final stage of the 
study, by applying a clustered seismic model, the results were reviewed to highlight structural and tectonic boundaries in the seismic 
image. By applying neural networks and the SOM algorithm, seismic reflector continuity was significantly improved compared to the 
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granicę woda–gaz, jak również zidentyfikowano nadkład  
w postaci serii łupków. Natomiast przy zastosowaniu prost-
szych rozwiązań nienadzorowanego uczenia maszynowego 
można określić przestrzenny rozkład większych obiektów 
geologicznych. Przykładowo w pracy Di i in. (2018) na zdjęciu 
sejsmicznym 3D okonturowany został wysad solny.

Obszary pasm fałdowo-nasuwczych i basenów sedymen-
tacyjnych zlokalizowanych na przedpolu orogenów to cha-
rakterystyczne strefy, cechujące się często znacznym stop-
niem zaburzeń tektonicznych. Obraz sejsmiczny w podłożu 
górotworu charakteryzuje się często znacznie gorszą jakością 
niż w sąsiadującym obszarze zapadliska przedkarpackiego 
usytuowanym na przedpolu orogenu (vide Pietsch i in., 1996; 
Kuśmierek i Baran, 2008; Stefaniuk i in., 2009; Urbaniec i in., 
2018). W przypadku analizowanej strefy brzeżnej podłoża 
Karpat słaba czytelność obrazu sejsmicznego w znacznym 
stopniu nie tylko utrudnia możliwość śledzenia zmienności 
konkretnych parametrów analizowanych formacji w obrazie 
sejsmicznym, ale często nie pozwala nawet na w pełni wiary-
godne odtworzenie ogólnej budowy strukturalnej i tektonicznej 
rejonu.

Celem badań jest wykorzystanie atrybutów sejsmicznych 
w procesie uczenia sieci neuronowej do bardziej wiarygodnego 
odzwierciedlenia budowy strukturalnej podłoża brzeżnej strefy 
Karpat. Wykorzystując sieci neuronowe typu feed-forward, na 
podstawie danych sejsmicznych i wyekstrahowanych z nich 
atrybutów, wykonano szereg obliczeń iteracyjnych prowadzą-
cych do uzyskania wynikowych modeli, różniących się ukła-
dem strukturalnym i dynamiką refleksów otrzymanego obrazu 
sejsmicznego. Do szczegółowych analiz wybrano dwa modele, 
które zdaniem autorów cechowały się największą wiarygodno-
ścią geologiczną i ciągłością refleksów sejsmicznych. Modele 
te mogą być wykorzystane niezależnie do różnego rodzaju 
analiz: strukturalnych, tektonicznych lub sejsmofacjalnych.

Pierwszy z wybranych modeli wynikowych miał za zadanie 
oddzielić strefy o większym stopniu zaszumienia od stosunko-
wo ciągłych refleksów związanych z utworami miocenu auto-
chtonicznego i mezo-paleozoicznego lub neoproterozoicznego 
podłoża. Natomiast celem drugiego z wytypowanych modeli 
było odzwierciedlenie morfologii analizowanych formacji 
i wskazanie obecności nieciągłości w obrazie sejsmicznym, 
pozwalających na bardziej szczegółową interpretację efektów 
oddziaływania procesów tektonicznych w utworach występu-
jących w podłożu nasunięcia karpackiego.

standard post-stack time migrated seismic volume. Moreover, based on the results, it was possible to more precisely define the spatial 
ranges of individual tectonic blocks within the Meso-Paleozoic and Neoproterozoic basement. A detailed morphology of the Cenozoic 
base surface, as well as the main faults, could also be reconstructed in the study area.

Key words: unsupervised machine learning (ML), neural network (NN), self-organizing map (SOM), seismic attributes, structural 
interpretation, Carpathians basement.

Wstęp

Jakość danych sejsmicznych ma istotne znaczenie w pro-
cesie interpretacji strukturalnej i litofacjalnej, stanowiących 
podstawę do poszukiwania, rozpoznawania, a także eksploatacji 
złóż węglowodorów. Nowoczesne technologie bazujące na 
sztucznej inteligencji dostarczają nowych możliwości analizy 
zapisu sejsmicznego, a zarejestrowane we wcześniejszych latach 
dane sejsmiczne mogą zostać na nowo przetworzone i prze-
analizowane. Techniki uczenia maszynowego, będące częścią 
sztucznej inteligencji (AI), były już wielokrotnie stosowane  
w różnego rodzaju badaniach, m.in. do wieloatrybutowej ana-
lizy obiektów geologicznych, takich jak wysady solne (Di i in., 
2018), do prognozowania własności petrofizycznych konkretnej 
formacji złożowej (Topór, 2020, 2021), analizy danych geo-
chemicznych (Janiga, 2023) czy też weryfikacji interpretacji 
struktur paleokrasu, mających znaczenie jako poziom zbior-
nikowy dla akumulacji węglowodorów (Afonso i in., 2018).

Techniki uczenia maszynowego, powszechnie wykorzy-
stywane w analizach sejsmofacjalnych, są jedną z bardziej 
istotnych metod badawczych, pozwalających na uzyskanie 
szczegółowej wiedzy na temat rozprzestrzenienia i zmienności 
konkretnych cech i parametrów analizowanych formacji skal-
nych (Wrona i in., 2018). Jednak jakość danych sejsmicznych, 
jakimi dysponujemy w rejonie zapadliska przedkarpackiego 
i przedgórza Karpat, nie zawsze jest wystarczająca do śledzenia 
zmian w trendach strukturalnych, facjalnych czy litologicznych 
z oczekiwaną rozdzielczością. W związku z tym w procesie prac 
interpretacyjnych dokonuje się szeregu różnego typu działań 
i operacji na danych sejsmicznych, mających na celu uzyskanie 
bardziej wiarygodnego i jednoznacznego odwzorowania układu 
refleksów sejsmicznych, a co za tym idzie – pozwalającego na 
bardziej szczegółową interpretację geologiczną lub złożową. 
Przykładowo El-Dabaa i in. (2024) zastosowali nienadzorowane 
uczenie maszynowe do usprawnienia wykrywania przebiegu 
kanałów rozprowadzających w części podmorskiej delty Nilu. 
Zastosowano tutaj podejście wieloatrybutowe wraz z dekom-
pozycją spektralną. Do procesów uczenia użyto algorytmu 
samoorganizujących się map (SOM)  wraz z analizą głównych 
składowych (Principal Component Analysis, PCA), a na pod-
stawie przeprowadzonych badań autorom udało się wykonać 
szczegółowe rozpoznanie skał zbiornikowych w obrębie stref 
kanałowych, z podziałem na piaskowce, piaskowce zawodnio-
ne, piaskowce nasycone gazem. Ponadto wyinterpretowano 
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Zarys budowy geologicznej rejonu badań

Obszar badań usytuowany jest w centralnej części za-
padliska przedkarpackiego (rysunek 1), a w odniesieniu do  
najstarszych pięter strukturalnych – na obszarze bloku ma-
łopolskiego.

Najniższe piętro strukturalne w obszarze badań stanowi 
seria anchimetamorficznych utworów neoproterozoiku (rysu-
nek 2), reprezentowana przez silnie zdiagenezowane utwory 
klastyczne (w większości drobnoklastyczne), które w niewiel-
kim stopniu przeobrażone zostały w wyniku oddziaływania 
procesów regionalnego metamorfizmu (Buła i Habryn, 2011; 
Kowalska, 2012).

Kolejne piętro strukturalne reprezentują utwory górnego 
paleozoiku, tj. seria węglanowa środkowego–górnego dewonu 
i dolnego karbonu, a lokalnie także utwory klastyczne dolnego 
karbonu (Moryc, 1992, 1996; Buła i Habryn, 2008).

W obrębie piętra mezozoicznego występują głównie utwory 
triasu i jury, a lokalnie w zachodniej części obszaru również 
utwory kredy. Utwory triasu reprezentowane są przez serię 
skał klastycznych zaliczanych tradycyjnie do kompleksu li-
tostratygraficznego pstrego piaskowca dolnego i środkowego 
(Głowacki i Senkowiczowa, 1969; Szyperko-Teller i Moryc, 
1988). Wypełniają one głównie obniżenia w paleomorfologii 
powierzchni stropowej paleozoiku. Lokalnie w nadkładzie 
występują również osady marglisto-wapienne, z wtrącenia-
mi skał siarczanowych, zaliczane do retu (górnego pstrego 
piaskowca) i wapienia muszlowego (Urbaniec i in., 2013; 
Moryc, 2014). Zalegające na różnych stratygraficznie ogniwach 

(od neoproterozoiku po środkowy trias) utwory jurajskie  
(rysunek 2) reprezentowane są głównie przez osady najwyż-
szego keloweju oraz węglanową serię jury górnej. Profil jury 
górnej rozpoczyna kompleks pelitycznych osadów wapienno-
-marglistych, dobrze udokumentowanych mikrofaunistycznie, 
określany jako seria gąbkowo-globuligerinowa (Gutowski 
i in., 2007). Wyżej w profilu utworów jury górnej występuje 
silnie zróżnicowana facjalnie i litologicznie seria osadów wa-
piennych, dolomitycznych i marglistych o miąższości rzędu 
kilkuset metrów. Najbardziej charakterystycznym elementem 
wyróżniającym się w budowie geologicznej rejonu są budowle 
organiczne o charakterze mikrobialno-gąbkowym (Morycowa 
i Moryc, 1976; Gliniak i in., 2005; Matyja, 2009), których 
kompleksy mogą osiągać lokalnie dość znaczne rozmiary, 
o miąższości przekraczającej nawet 500 m (Gliniak i in., 2005; 
Gliniak i Urbaniec, 2005; Urbaniec, 2021). Wyżej, w profilu 
jury górnej, zalega seria koralowcowo-onkolitowa, zawierająca 
liczne, rozkruszone i zabradowane fragmenty makrofauny. 
Lokalnie pojawiają się także przewarstwienia wapieni detry-
tycznych o znacznym udziale oolitów (Złonkiewicz, 2006, 
2009). Najmłodszym ogniwem litostratygraficznym rozpozna-
nym w obszarze badań są zróżnicowane facjalnie płytkowodne 
osady węglanowe zaliczane do serii muszlowcowo-oolitowej 
dolnej (Gutowski i in., 2007; Urbaniec i in., 2010). W obrębie 
profilu tego właśnie ogniwa znajduje się granica jura–kreda 
(vide Gutowski i in., 2007; Matyja i Barski, 2007; Matyja, 
2009; Urbaniec i in., 2010; Świetlik i in., 2011). We wschodniej 
części obszaru badań utwory jury zostały całkowicie usunięte 
przez procesy erozji.

Rysunek 1. Położenie obszaru badań na tle zasięgu zapadliska przedkarpackiego w Polsce; zasięgi jednostek geologicznych  
wg Porębskiego i Warchoła (2006)
Figure 1. Location of the study area against the background of the range of the Carpathian Foredeep in Poland; ranges of geological 
units according to Porębski and Warchoł (2006)
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Utwory paleogenu w obszarze badań rozpoznane zostały 
w jego SE części (Moryc, 1995), jednak ich zasięg w kierunku 
N i NW nie jest dobrze rozpoznany. Można jedynie przypusz-
czać, że wypełniają one największe obniżenia podłoża, tzw. 
paleodoliny, które w czasie późnego paleogenu, aż do prawdo-
podobnie wczesnego miocenu tworzyły w omawianym rejonie 
swoiste bezodpływowe zagłębienia (Karnkowski, 2019).

Kompleks utworów miocenu autochtonicznego podzielić 
można na trzy zasadnicze jednostki litostratygraficzne: kla-
styczną serię podewaporatową, serię ewaporatową górnego 
badenu oraz serię utworów klastycznych badenu górnego 
i sarmatu. Utwory serii podewaporatowej reprezentowane są 
głównie przez pakiet skał ilastych i mułowców, należących 
do formacji skawińskiej, która w części wschodniej obszaru 
zastępowana jest przez piaskowce baranowskie, wykształco-
ne głównie jako piaskowce i piaski kwarcowe z wkładkami 
mułowców i iłowców. Miąższości utworów obydwu ogniw 
litostratygraficznych wynoszą zazwyczaj od kilkunastu do 
około 40 metrów, a jedynie lokalnie w strefach paleodolin 
mogą się wyraźnie zwiększać. Granice obydwu wspomnia-
nych wydzieleń litostratygraficznych (tj. formacji skawińskiej 
i warstw baranowskich) nie zostały jednoznacznie sprecy-
zowane, w związku z tym w obszarach, gdzie mogą się one 
zazębiać, istnieją spore trudności w ich rozróżnieniu.

Wyżej w profilu utworów miocenu występuje seria ewapo-
ratowa badenu, która w obszarze badań reprezentowana jest 
przez utwory siarczanowe (anhydryty i gipsy), wydzielane 
jako formacja z Krzyżanowic (Alexandrowicz i in., 1982).

Zróżnicowany pod względem litologicznym i facjalnym 
kompleks utworów silikoklastycznych zalegających powyżej 

serii ewaporatowej, cechujący się znaczną różnorodnością 
litologiczną, w całości zaliczany jest do formacji z Machowa 
(Alexandrowicz i in., 1982).

Najmłodszym ogniwem stratygraficznym są utwory czwar-
torzędu, tworzące luźną pokrywę o niewielkiej miąższości, 
najczęściej rzędu kilku metrów.

Charakterystyka danych sejsmicznych

Dane sejsmiczne podzielone są na dwa odrębne wolumeny 
sejsmiczne: W1 oraz W2. Wolumen pierwszy (W1), obejmujący 
północno-zachodnią część obszaru badań, charakteryzuje się 
dobrej jakości obrazem sejsmicznym z zachowaną dynamiką 
zapisu. Znaczną część profilu sejsmicznego zajmują utwory 
miocenu autochtonicznego. Wolumen drugi (W2) obejmuje 
południowo-wschodnią część obszaru badań. W głębiej po-
łożonych osiowych strefach paleodolin w podłożu utworów 
miocenu zalegają utwory paleogenu. Północna część wolumenu 
W2 cechuje się dobrym zapisem sejsmicznym o wysokiej 
amplitudzie, zwłaszcza w spągowej partii utworów kenozoiku, 
pomimo występowania w podłożu utworów należących do 
różnych ogniw litostratygraficznych: mezozoicznych, paleozo-
icznych, a nawet neoproterozoicznych. Natomiast w zapisie 
sejsmicznym w południowej części obszaru badań, gdzie 
w nadkładzie pojawiają się utwory jednostek tektonicznych 
Karpat, obraz na profilach jest w dużym stopniu nieczytelny, 
co w konsekwencji znacząco utrudnia interpretację strukturalną 
(rysunek 3). Do obliczeń wybranych atrybutów sejsmicznych 
oraz analiz strukturalnych wykorzystano wolumen danych 

Rysunek 2. Zgeneralizowany przekrój geologiczny przez obszar badań
Figure 2. Generalized geological cross-section through the study area
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sejsmicznych w wersji migracji czasowej po składaniu FX, 
opracowany w Geofizyce Kraków S.A.

Metodyka procesu uczenia maszynowego

Uczenie maszynowe to wszechstronne narzędzie z gatunku 
sztucznej inteligencji, które umożliwia samoistne uczenie się 
na podstawie dostarczonych danych bez potrzeby ingerencji 
człowieka (Jordan i Mitchell, 2015). Techniki uczenia ma-
szynowego najczęściej stosowane są w celach klasyfikacji, 
grupowania i predykcji różnego typu danych, a znaczącą rolę 
podczas wykonywania tego typu zadań odgrywają metody sta-
tystyczne, optymalizacja matematyczna, metody obliczeniowe, 
jak również prawdopodobieństwo. Wykorzystanie algorytmów 
uczenia maszynowego do wykonywania operacji na danych 
odzwierciedlających zjawiska naturalne wymaga szerokiej 
wiedzy regionalnej w celu selekcji uzyskanych wyników, które 
mogą być nierzeczywiste i nieużyteczne (Ma, 2019).

Metody uczenia maszynowego dzielą się na dwa rodzaje: 
konwencjonalne uczenie maszynowe (CML) oraz głębokie 
uczenie (DL). CML wykorzystuje mniej rozbudowane modele 
oparte na mniejszej liczbie warstw i prostszych połączeniach 
między danymi. Często stosowane algorytmy w przypadku 
CML to m.in. k-średnich (ang. k-means), losowy las decyzyjny 
(ang. random forest), k-najbliższych sąsiadów (ang. k-nearest 
neighbours), klasyfikacja Bayesowska czy proste sieci neu-
ronowe typu feed-forward, używane w celach klasyfikacji 
i predykcji (Ma, 2019). Głębokie uczenie (DL) maszynowe 
jest bardzo zaawansowaną techniką wykorzystującą m.in. sieci 
neuronowe, które autonomicznie wyodrębniają wspólne cechy 
i ich relacje. Uczenie obejmujące głębokie sieci neuronowe 
różnych typów, auto-kodery i transformatory pozwala na two-
rzenie bardziej złożonych modeli, składających się z dziesiątek, 
a nawet setek warstw i milionów parametrów (Lin i in., 2024).

Uczenie maszynowe w przypadku danych sejsmicznych 
i otworowych może odbywać się w sposób nadzorowany i nie-
nadzorowany. Według Lin i in. (2024) częściej w badaniach 

Rysunek 3. Przekrój arbitralny (NW-SE) przez analizowane zdjęcie sejsmiczne 3D – porównanie zapisu sejsmicznego w części 
północnej oraz południowej obszaru badań
Figure 3. Arbitrary line (NW-SE) through 3D seismic survey – comparison of the seismic record between northern and southern part  
of the research area
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(ponad 75% publikacji) stosuje się nadzorowany sposób uczenia 
maszynowego (na danych rzeczywistych i syntetycznych). 
Nienadzorowany sposób uczenia maszynowego pojawia się 
w niespełna 8% publikacji, a głównym celem tego sposobu jest 
identyfikacja struktur, wzorców i relacji w danych wejściowych, 
takich jak: amplituda, częstotliwość czy faza (Hartono i in., 
2024) (rysunek 4).

na metodzie redukcji wymiarowości (El-Dabaa i in., 2024). 
Metoda ta polega na przedstawieniu danych wielowymiaro-
wych na niskowymiarowej siatce (np. 2D) tak, aby wektory 
wag danych wejściowych były zmapowane do pobliskich 
neuronów na mapie (Qi i Castagna, 2013; Zhao i in., 2018). 
Sieć neuronowa tworzona na bazie algorytmu SOM składa 
się z warstwy wejściowej, warstwy ukrytej, w której znajdu-
je się sieć neuronów 2D (warstwa Kohonena) oraz warstwy 
wyjściowej (rysunek 5). Dane wejściowe inicjują powstanie 
wektorów danych, zwanych wzorcami, w których odbywa się 
proces uczenia sieci neuronowej (Bauer i in., 2012).

Rysunek 4. Uogólniony schemat nienadzorowanego procesu  
uczenia maszynowego (źródło: Schlumberger, 2020)
Figure 4. Generalized scheme of the unsupervised machine  
learning process (source: Schlumberger, 2020) 

W przypadku nadzorowanego procesu uczenia maszynowe-
go znane są dane wejściowe i wyjściowe, czyli tzw. etykiety, 
a cały proces skupia się na poszukiwaniu cech i łączeniu ich 
między poszczególnymi danymi w ramach zdefiniowanych 
przez etykiety wyjściowe (Hastie i in., 2009). Natomiast nie-
nadzorowane uczenie maszynowe opiera się na poszukiwaniu 
relacji za pomocą dostępnych algorytmów bez zdefiniowane-
go wcześniej modelu wyjściowego, wykorzystując wszyst-
kie dostępne cechy danych wejściowych. Dlatego rezultaty 
uczenia nienadzorowanego wymagają odpowiedniej kontroli 
po zastosowaniu (Ma, 2019). Proste sieci neuronowe typu 
feed-forward w clusteringu mogą stosować różne algoryt-
my w celu klasteryzacji danych. Jednym z algorytmów jest 
mapa samoorganizująca (ang. self-organizing map, SOM) 
(Kohonen, 2001), zwana również siecią Kohonena, której 
fundamentalnym paradygmatem jest konkurencyjne uczenie. 
Algorytm ten powszechnie stosowany jest w prostych sieciach 
neuronowych typu feed-forward ze względu na możliwości 
klasteryzacji nieliniowo skorelowanych danych. SOM jest 
ściśle powiązany z metodą kwantyfikacji wektorowej (Haykin, 
1999), co podwyższa jego skuteczność w klasyfikacji wielo-
wymiarowych danych, gdyż zachowuje on relacje metryczne 
i topologiczne pomiędzy danymi (Matos i in., 2007). Algorytm 
SOM wraz z analizą głównych składowych (ang. principal 
component analysis, PCA) wykorzystywane są najczęściej 
podczas nienadzorowanego uczenia maszynowego opartego 

Rysunek 5. Uogólniony schemat uczenia struktury sieci neurono-
wej algorytmem SOM (według Zhu i in., 2022)
Figure 5. Generalized diagram of the neural network structure 
learning by the SOM algorithm (based on Zhu et al., 2022)

Proces uczenia sieci neuronowej odbywa się iteracyjnie. 
Wstępnie zdefiniowano liczbę klastrów, do których sieć ma 
za zadanie przypisać dane (iteracyjnie dostosowywano liczbę 
klastrów, obserwując wyniki). Każda dana wejściowa przyj-
muje wektor prototypowy, który w każdej iteracji pozostaje 
taki sam. Następnie w procesie minimalizacji funkcji błędów 
algorytm oblicza odległość (zazwyczaj euklidesową) między 
wektorem danej wejściowej a wektorem wagowym neuronu. 
Neuron, którego wektor wagowy jest najbardziej podobny do 
wektora prototypowego danej wejściowej, jest tzw. zwycięzcą. 
Kolejno po wybraniu zwycięskiego neuronu następuje aktu-
alizacja wektorów wagowych – zwycięskiego i sąsiednich do 
niego neuronów (vide Meyer i in., 2022; Zhang i Liu, 2002). 
Iteracje te powtarzane są, aż do osiągnięcia kryterium zatrzy-
mania (stanu równowagi), które jest zdefiniowane na wstępie 
w następujący sposób:
•	 minimalny promień neuronów od danych (neurony w ko-

lejnych iteracjach nie wykazują już zmian w położeniu lub 
przemieszczenie jest niewielkie);

•	 osiągnięta założona liczba iteracji;
•	 brak zmian w przynależności danych do klastrów.
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W zależności od ilości i typu danych wejściowych można 
stworzyć bardziej lub mniej rzeczywiste modele klasteryzacji 
(Matos i in., 2007; Saraswat i Sen, 2012; Kourki i Riahi, 2014; 
Di i in., 2018; Meyer i in., 2022).

Proces nienadzorowanego uczenia maszynowego 
zastosowany w niniejszej pracy

W artykule opisano postępowanie w procesie nienadzoro-
wanego uczenia maszynowego za pomocą sieci neuronowej 
stosującej algorytm self-organizing map do procesu klaste-
ryzacji atrybutów sejsmicznych. Do wykonania nienadzoro-
wanego uczenia maszynowego wykorzystano moduł „Neural 
Net” zaimplementowany w oprogramowaniu Petrel firmy 
Schlumberger.

Proces uczenia maszynowego podzielono na 5 kroków:
1.	 Wyselekcjonowanie danych wejściowych (wybór odpo-

wiednich atrybutowych wolumenów sejsmicznych).
2.	 Określenie liczby klastrów (skupień), manualne wprowa-

dzenie liczby klastrów do uczenia.
3.	 Zastosowanie algorytmu SOM:

•	 inicjalizacja – wprowadzenie zadanej liczby skupień (na-
zywanych centroidami) w obręb danych wejściowych;

•	 klasteryzacja – przypisanie danych do najbliższych neu-
ronów (mierzone za pomocą odległości euklidesowej);

•	 aktualizacja – obliczenie nowej pozycji sąsiadujących 
neuronów w kierunku zwycięskich wektorów na pod-
stawie współczynnika wagi, zależnego od odległości 
próbki od wektora;

•	 iteracja – powtarzanie kroków klasteryzacji i aktualizacji 
do momentu osiągnięcia „równowagi”, tj. spełnienia 
jednego z poniższych warunków:
–– osiągnięta maksymalna liczba iteracji,
–– niewielkie zmiany w pozycji neuronów,
–– brak migracji pomiędzy klastrami (wszystkie dane 

optymalnie sklastrowane).
4.	 Wizualizacja modelu i ewaluacja, które stanowiły zasadni-

czo najważniejszy punkt w procesie uczenia maszynowego. 
Wyniki uczenia maszynowego oceniane były subiektywnie, 
a proces odbywał się iteracyjnie (poprzez zmianę liczby 
klastrów we wstępnej fazie procesu). Gdy model spełnił 
swoje założenie, proces nauki uległ zakończeniu.

5.	 Analiza i ocena wyników.

Analiza danych wejściowych

Danymi wejściowymi do procesu nienadzorowanego ucze-
nia maszynowego były wyekstrahowane wolumeny danych 

sejsmicznych w wersjach wybranych atrybutów sejsmicznych. 
Spośród wielu atrybutów sejsmicznych obliczonych w pro-
gramie Petrel wybrano kilka, które w najlepszym stopniu 
odzwierciedlały poszczególne cechy zapisu sejsmicznego 
w rejonie badań:
•	 Cosinus Phase;
•	 Chaos;
•	 Variance;
•	 Amplitude Contrast;
•	 Instantaneous Bandwidth;
•	 Iso-frequency Component;
•	 Dominant Frequency.

Charakterystykę i możliwości interpretacyjne poszcze-
gólnych atrybutów sejsmicznych przedstawiono w licznych 
opracowaniach i publikacjach, w tym m.in. takich autorów jak: 
Randen i in. (2000), Chopra i Marfurt (2007), Azevedo i Pereira 
(2009), Bartoń i Urbaniec (2018), Schlumberger (2024).

Selekcja atrybutów do klasteryzacji
Spośród kilku różnych kompilacji atrybutów sejsmicz-

nych poddanych procesowi uczenia maszynowego do analizy 
wybrano dwa zestawy atrybutów, które charakteryzowały się 
optymalnym współczynnikiem korelacji. W procesie selekcji 
starano się wybrać te atrybuty, które w najlepszym stopniu 
odzwierciedlały zmienność podstawowych parametrów danych 
sejsmicznych, takich jak: faza, amplituda czy częstotliwość.

Pierwszy z wybranych zestawów atrybutów sejsmicznych 
stanowił dane wejściowe dla pierwszej wersji nienadzorowane-
go uczenia maszynowego, które przeprowadzono na wolumenie 
sejsmicznym W2, obejmującym południowo-wschodnią część 
obszaru badań. Ze względu na gorszą jakość zapisu sejsmiczne-
go w podłożu Karpat – do uzyskania zadowalających efektów 
uczenia konieczne było zastosowanie większej liczby atrybutów 
sejsmicznych (Cosinus Phase, Variance, Amplitude Contrast, 
Instantaneous Bandwidth, Chaos, Iso-frequency Component 
oraz Dominant Frequency). W południowo-wschodniej części 
analizowanego zdjęcia sejsmicznego największy wpływ na 
jakość obrazu sejsmicznego ma obecność zaburzonych tekto-
nicznie utworów nasunięcia karpackiego, często cechujących 
się dużymi wartościami upadów warstw. W konsekwencji obraz 
sejsmiczny pod nasunięciem jest znacznie bardziej zaszumiony. 
W związku z tym głównym celem uczenia maszynowego w tym 
przypadku było wykorzystanie klasteryzacji do oddzielenia 
stref szumu od użytecznego sygnału sejsmicznego i pakietów 
ciągłych refleksów sejsmicznych (rysunek 6).

Drugi zestaw atrybutów sejsmicznych wybranych do nie-
nadzorowanego uczenia maszynowego był analogiczny do 
zestawu pierwszego, z wyjątkiem atrybutu Cosinus Phase, 
który odrzucono, gdyż atrybut ten znacząco wpływał na wynik 
klasyfikacji, co zostało wychwycone podczas procesu uczenia. 
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Założonym celem klasteryzacji było eksperymentalne uwypu-
klenie granic strukturalnych i tektonicznych poprzez zastosowa-
nie modelu sklasteryzowanego zapisu sejsmicznego, w oparciu  
o wspomniane powyżej atrybuty sejsmiczne (rysunek 7).

Nienadzorowane uczenie maszynowe charakteryzuje się 
manualną inicjalizacją liczby klastrów. W trakcie kolejnych 
iteracji liczba klastrów w procesie uczenia ustalana była pod 
kątem uzyskania jak najwierniejszego odwzorowania charak-
terystycznych cech obrazu sejsmicznego i jego zmienności.

Wyniki analizy modelu treningowego

Różnice pomiędzy uzyskanymi modelami
W ramach przeprowadzonych badań przetestowano dwa 

modele sieci neuronowych SOM, różniące się liczbą wytypo-
wanych atrybutów. 

Do uczenia w modelu nr 2 nie użyto atrybutu Cosinus 
Phase, który znacząco wpływał na koherencję danych po kla-
steryzacji. Wyniki modelowań przedstawiono na przykładach 

Rysunek 6. Schemat wybranych danych wejściowych (atrybutów sejsmicznych) do procesu nienadzorowanego uczenia maszynowego 
(wolumenu sejsmiczny W2) – klasteryzacja I
Figure 6. Diagram of selected input data (seismic attributes) for the unsupervised machine learning process (seismic volume W2) – 
Cluster analysis I

Rysunek 7. Schemat wybranych danych wejściowych (atrybutów sejsmicznych) do procesu nienadzorowanego uczenia maszynowego 
(wolumen sejsmiczny W2) – klasteryzacja II
Figure 7. Diagram of selected input data (seismic attributes) for unsupervised machine learning process (seismic volume W2) –  
Cluster analysis II
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pięciu profili sejsmicznych, których lokalizację zaznaczono 
na rysunku 8.

Jak już wspomniano, założeniem pierwszej wersji uczenia 
sieci neuronowej było oddzielenie stref szumu sejsmicznego 
od pakietów ciągłych refleksów sejsmicznych, występujących 
w podłożu jednostek tektonicznych Karpat w południowo-
-wschodniej części obszaru badań. Uzyskany przez sieć neu-
ronową sklasteryzowany obraz sejsmiczny w bardzo dobrym 
stopniu odwzorował przebieg granicy pomiędzy utworami 
miocenu w podłożu nasunięcia karpackiego a zróżnicowanym 
stratygraficznie i litologicznie mezo-paleozoicznym podłożem 
(rysunek 9). Układ sieci nieciągłości tektonicznych po procesie 
klasteryzacji wydaje się bardziej jednoznaczny w porównaniu 
ze standardową wersją migracji czasowej po składaniu. W toku 
nienadzorowanego uczenia maszynowego wybrano wersję 
z podziałem na 8 klastrów. Klastry 2 oraz 4–7 związane są 
z brakiem sygnału lub szumem sejsmicznym, natomiast kla-
stry 0, 1 i 3 odpowiadają strefom bardziej ciągłych refleksów 
sejsmicznych. Dzięki zastosowaniu takiej liczby klastrów dane 
sejsmiczne, szczególnie w strefie pod nasunięciem Karpat, 
zostały podzielone w sposób najbardziej wiarygodny. Przy 
próbach zastosowania innej liczby klastrów obraz był zbyt 
mocno zgeneralizowany lub nieczytelny.

Rysunek 8. Szkic lokalizacji analizowanych przekrojów 
sejsmicznych
Figure 8. Location of analyzed seismic sections

Rysunek 9. Przekrój sejsmiczny S1: a) w wersji migracji czasowej po składaniu, b) model wynikowy uczenia sieci neuronowej algoryt-
mem SOM – klasteryzacja I
Figure 9. Seismic section S1: a) post-stack time migration version, b) resulting model of neural network learning by the SOM algorithm 
– cluster analysis I
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Druga wersja modelu uczenia sieci neuronowej miała 
za zadanie odzwierciedlić warunki strukturalno-tektoniczne 
w skrajnie brzeżnej strefie nasunięcia Karpat. Skomplikowana 
sytuacja tektoniczna w tej strefie wymagała głębszego rozpo-
znania i szczegółowej analizy. Wyniki uzyskane na podstawie 
uczenia sieci neuronowej pozwoliły na analizę przebiegu 
nieciągłości i granic tektonicznych w podłożu nasunięcia, 
a zastosowany podział na klastry przyniósł dobre efekty w za-
kresie odwzorowania tektoniki rejonu badań (rysunek 10). 
Szczególną uwagę zwracają blokowy podział podłoża mezo-  
paleozoicznego oraz wyraźnie zarysowujące się zmiany facjalne 
w obrębie utworów miocenu autochtonicznego. W przypadku 
modelu drugiego zdecydowano się na bardziej szczegółową 
analizę zmienności obrazu sejsmicznego. Wybrano wersję 
podziału danych sejsmicznych na 12 klastrów, które z większą 
szczegółowością odwzorowują zapis sejsmiczny. Zasadniczo 
klastry od 0 do 6 wskazują na strefy ciągłego zapisu sejsmicz-
nego o zróżnicowanych upadach i dynamice, natomiast klastry 
od 7 do 11 odpowiadają strefom szumu sejsmicznego. Warto 
zauważyć, że strefy o większym stopniu zaszumienia (kla-
stry 7–11) obecne są zarówno w obrębie jednostek tektonicz-
nych Karpat, jak i w niektórych warstwach zlokalizowanych  

w obrębie utworów miocenu autochtonicznego zapadliska 
przedkarpackiego (rysunek 10).

Założeniem pracy badawczej było zaproponowanie stosun-
kowo prostej metody służącej do weryfikacji zapisu danych 
sejsmicznych pod kątem interpretacji strukturalnej w strefach 
silnie zaburzonych i niejednoznacznych. Analiza wykonanych 
modeli nienadzorowanego uczenia maszynowego siecią neuro-
nową uczoną algorytmem SOM pozwala na uzyskanie dodatko-
wych informacji pozwalających na weryfikację dotychczasowej 
interpretacji danych sejsmicznych w strefach pod nasunięciem 
Karpat. Na rysunku 11 przedstawiono porównanie standardowe-
go obrazu sejsmicznego na wersji migracji czasowej po składaniu 
(poststack) z uzyskanymi wynikami sklasteryzowanych modeli 
sieci neuronowej. Otrzymana zmienność sklasteryzowanego 
obrazu sejsmicznego wymagała przetestowania kilku różnych 
rozwiązań dla poszczególnych modeli, w tym odpowiednie-
go dostosowania palet kolorów i odcieni dla poszczególnych 
klastrów. W centralnej części przekroju w wersji migracji po 
składaniu widoczna jest rozległa strefa szumu sejsmicznego, 
obejmująca swym zasięgiem utwory miocenu i ich podłoża, 
w obrębie której bardzo trudno byłoby wykonać interpretację 
horyzontów sejsmicznych lub stref dyslokacyjnych. Zastosowane 

Rysunek 10. Przekrój sejsmiczny S2: a) w wersji migracji czasowej po składaniu, b) model wynikowy uczenia sieci neuronowej 
algorytmem SOM – klasteryzacja II
Figure 10. Seismic section S2: a) post-stack time migration version, b) resulting model of neural network learning by the SOM algorithm 
– cluster analysis II
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w ramach niniejszej pracy techniki uczenia maszynowego po-
zwoliły na uzyskanie w tej strefie bardziej czytelnego obrazu 
sejsmicznego, umożliwiającego przeprowadzenie bardziej wia-
rygodnej interpretacji strukturalnej. Uzyskany obraz sejsmofacji 
wyraźnie wskazuje na budowę blokową mezo-paleozoicznego  
i neoproterozoicznego podłoża, które w swej historii poddawane 
było oddziaływaniu różnorodnych zjawisk tektonicznych, czego 
efektem jest charakterystyczny znaczny stopnień dezintegracji 
tych utworów (rysunek 11b). Na sklasteryzowanym obrazie 
sejsmicznym znacznie lepiej widoczne są zmienności kątowe 

w obrębie poszczególnych bloków tektonicznych. W obrazie 
tym wyraźniej zaznaczają się również strefy uskokowe, co 
daje możliwość dokładniejszego prześledzenia charakteru 
tektonicznego analizowanej strefy przedgórza Karpat.

Zastosowanie wyników badań

Wynikiem opracowania dwóch niezależnych modeli, po-
wstałych z wykorzystaniem technik nienadzorowanego uczenia 

Rysunek 11. Przekrój sejsmiczny S3: a) w wersji migracji czasowej po składaniu, b) model wynikowy uczenia sieci neuronowej 
algorytmem SOM – klasteryzacja I, c) model wynikowy uczenia sieci neuronowej algorytmem SOM – klasteryzacja II
Figure 11. Seismic section S3: a) post-stack time migration version, b) resulting model of neural network learning by the SOM algorithm 
– cluster analysis I, c) resulting model of neural network learning by the SOM algorithm – cluster analysis II
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maszynowego, są uzyskane dwa różne obrazy sejsmiczne, 
charakteryzujące się indywidualnymi cechami, które mogą być 
wykorzystywane do różnych rodzajów interpretacji (struktu-
ralnej, tektonicznej, facjalnej itp.). Modele te wniosły szereg 
dodatkowych informacji na temat budowy utworów miocenu 
i mezo-paleozoiku w podłożu Karpat, gdzie zapis sejsmiczny 
cechuje się wyraźnie obniżoną jakością i wiarygodnością. 
W związku z tym uzyskane wyniki mogą być wykorzystane 
jako materiał pomocniczy do rozpoznania budowy struktural-
nej tej trudnej do interpretacji strefy. Ponadto analiza facjalna 
i tektoniczna obszaru pod nasunięciem Karpat oparta na wersji 
wolumenu sejsmicznego z zaimplementowanymi wynikami 
uczenia maszynowego może być bardziej szczegółowa i wia-
rygodna w porównaniu z wykorzystaniem do tego celu stan-
dardowych danych sejsmicznych w wersji migracji czasowej 
po składaniu lub przed składaniem. 

Przykład interpretacji potencjalnych nieciągłości tekto-
nicznych wykonanej na podstawie danych sejsmicznych po 
klasteryzacji przedstawiono na rysunku 12. W standardowym 
ujęciu, bazującym na danych sejsmicznych w wersji migracji 
czasowej, interpretacja dyslokacji w podłożu Karpat była bar-
dzo trudna, gdyż zapis sejsmiczny jest w tej strefie szczątkowy 

i niejednoznaczny (rysunek 12a). Jednak w wersji z zastosowa-
niem wyników uczenia maszynowego granice poszczególnych 
bloków tektonicznych zarysowujących się w utworach podłoża 
są znacznie bardziej jednoznaczne do interpretacji, podobnie jak 
uskoki w zalegających powyżej utworach miocenu autochto-
nicznego. Ponadto na uzyskanych po klasteryzacji obrazach sej-
smicznych znacznie łatwiej wyinterpretować można powierzch-
nię spągową utworów miocenu i paleogenu, a tym samym  
z większą wiarygodnością odtworzyć obecną morfologię pod-
łoża mezo-paleozoicznego i neoproterozoicznego. Otrzymany 
w wyniku klasteryzacji obraz przystropowej partii podłoża 
cechuje się zdecydowanie większą ciągłością przestrzenną 
i dynamiką, a tym samym jest on bardziej jednoznaczny.

Model o bardziej szczegółowej charakterystyce klastrów 
okazał się użyteczny w kontekście analiz strukturalnych i facjal-
nych. Na rysunku 13 przedstawiono interpretację tektoniczną 
wraz z wyznaczonymi na podstawie sejsmofacji blokami tekto-
nicznymi (fioletowe prostokąty), oddzielonymi powierzchniami 
dyslokacji. Z kolei niebieskie elipsy wskazują przypuszczalne 
strefy zalegania utworów paleogenu, w większości reprezen-
towanych przez serie skał zlepieńcowych, z wkładkami pia-
skowców i mułowców, odpowiadające formacji z Racławówki 

Rysunek 12. Przekrój sejsmiczny S4 z interpretacją nieciągłości: a) w wersji migracji czasowej po składaniu, b) model wynikowy  
uczenia sieci neuronowej algorytmem SOM – klasteryzacja I
Figure 12. Seismic section S4 with discontinuities interpretation: a) post-stack time migration version, b) resulting model of neural 
network learning by the SOM algorithm – cluster analysis I
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w ujęciu Moryca (1995). Utwory te wypełniają największe 
paleomorfologiczne zagłębienia, którymi najczęściej są osiowe 
partie głębokich paleodolin.

Dyskusja i wnioski

Przeprowadzone analizy obrazu sejsmicznego po procesie 
nienadzorowanego uczenia maszynowego siecią neuronową 
pozwoliły na bardziej szczegółowe rozpoznanie budowy struk-
turalnej utworów miocenu i ich mezo-paleozoicznego oraz 
neoproterozoicznego podłoża w brzeżnej strefie zalegania 
allochtonicznych utworów jednostek tektonicznych Karpat. 
Na bazie dostępnych wolumenów sejsmicznych w wersji 
migracji czasowej po składaniu obliczono szereg atrybutów 
sejsmicznych, niezbędnych do zaimplementowania w procesie 
uczenia maszynowego. W wyniku obliczeń uzyskano dwie 
sieci neuronowe, powstałe w wyniku zastosowania algorytmu 
SOM, które mogą być wykorzystane do różnego rodzaju analiz 
otrzymanych obrazów sejsmicznych.

Techniki uczenia maszynowego wykorzystywane są po-
wszechnie w różnego rodzaju badaniach formacji skalnych. 
Skupiając się na możliwościach, jakie oferuje sztuczna inteligen-
cja w zakresie danych sejsmicznych, można tego typu techniki 
zastosować do znajdowania konkretnych, charakterystycznych 
cech zapisu sejsmicznego. Cechy te można bowiem powiązać 
z odzwierciedleniem zakresów zmienności konkretnych para-
metrów (np. fizykochemicznych), charakterystycznych dla po-
szczególnych formacji skalnych, które z kolei w określony spo-
sób zapisują się w obrazie sejsmicznym. Znajdując powiązania 
pomiędzy tymi cechami, można stwierdzić ich powtarzalność 
w przestrzeni, co jest możliwe do zweryfikowania w dalszym 
etapie badań na podstawie interpretacji danych otworowych. 
Dzięki technikom uczenia maszynowego można uzyskać nie-
możliwą do wskazania przez człowieka korelację między  
poszczególnymi cechami danych sejsmicznych.

Efektywne rozpoznanie zbiornikowe na podstawie sto-
sunkowo niewielkiej ilości danych (dane sejsmiczne oraz 
otwór) za pomocą technik uczenia maszynowego sprawia, że 
wykorzystane metody badawcze wykazują wysoką użyteczność 

Rysunek 13. Przekrój sejsmiczny S5 z interpretacją nieciągłości: a) w wersji migracji czasowej po składaniu, b) model wynikowy  
uczenia sieci neuronowej algorytmem SOM – klasteryzacja II; fioletowe prostokąty – wydzielone bloki tektoniczne, niebieskie elipsy 
– strefy występowania utworów paleogenu
Figure 13. Seismic section S5 with discontinuities interpretation: a) post-stack time migration version, b) resulting model of neural 
network learning by the SOM algorithm – cluster analysis II; purple rectangles – distinguished tectonic blocks, blue ellipses – Paleogene 
formations zones
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w rozpoznaniu zmienności facjalnej formacji skalnych. W ra-
mach niniejszej pracy zastosowanie technik nienadzorowanego 
uczenia maszynowego pozwoliło na wykartowanie granic 
i odtworzenie geometrii poszczególnych bloków tektonicznych 
budujących podłoże Karpat i zapadliska przedkarpackiego. 
W badaniach skoncentrowano się na ocenie możliwości za-
stosowania tych technik do analizy rzeczywistych zależności 
dla danych sejsmicznych o gorszej jakości, zarejestrowanych 
w podłożu stref fałdowo-nasuwczych. Wytypowane do ana-
lizy zdjęcie sejsmiczne obejmuje brzeżną strefę nasunięcia 
jednostek karpackich oraz część zapadliska przedkarpackiego 
rozwiniętego u czoła orogenu. W południowo-wschodniej 
części zdjęcia, w strefie nasunięcia, obraz uzyskany w podłożu 
górotworu karpackiego charakteryzuje się bardzo słabą jako-
ścią, w tym dużą ilością szumu i brakiem ciągłości refleksów 
sejsmicznych. Strefa ta sprawia więc wiele trudności, zarówno 
w interpretacji strukturalnej, jak i litofacjalnej.

Dzięki zastosowaniu sieci neuronowych i algorytmu SOM 
z wykorzystaniem atrybutów sejsmicznych udało się uzyskać 
obraz o zdecydowanie lepszej jakości i większej ciągłości re-
fleksów sejsmicznych zarówno w przypadku utworów miocenu, 
jak i formacji skalnych zalegających w ich podłożu (tj. mezo- 
-paleozoicznych oraz neoproterozoicznych). Otrzymane wyniki 
okazały się bardzo pomocne w weryfikacji układu struktural-
nego i tektoniki obszaru pod nasunięciem Karpat w porów-
naniu z wykorzystaniem do tego celu standardowych danych 
sejsmicznych w wersji migracji czasowej.

Szczegółowa analiza obrazów sejsmicznych uzyskanych 
dzięki zastosowanym technikom uczenia maszynowego po-
zwoliła na wysunięcie dodatkowych wniosków na temat po-
działu podłoża na bloki tektoniczne, przebiegu dyslokacji oraz 
odtworzenie szczegółowej morfologii powierzchni spągowej 
kenozoiku w obszarze badań.

Artykuł powstał na podstawie pracy statutowej pt. Analiza sej-
smiczna formacji wodonośnej pod kątem szczegółowego rozpozna-
nia strukturalnego heterogeniczności zbiornika; praca INiG – PIB; 
nr zlecenia: 0069/SR/2024, nr archiwalny: DK-4100-0054/2024.
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