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Wykorzystanie technik uczenia maszynowego
do uszczegotowienia budowy strukturalnej utwordw podtoza
w brzeznej strefie Karpat zewnetrznych

Utilizing machine learning techniques to reconstruct the structural framework
of the basement formations in the marginal part of the Outer Carpathians

Kacper Paprota, Andrzej Urbaniec
Instytut Nafty i Gazu — Panstwowy Instytut Badawczy

STRESZCZENIE: Obraz sejsmiczny utworéw mezo-paleozoicznego i neogenskiego podtoza brzeznej czesSci Karpat zewngtrznych
charakteryzuje si¢ zazwyczaj zwickszonym poziomem szumu, jak rowniez obecnoscig artefaktow sejsmicznych, co znacznie obniza
wiarygodno$¢ interpretacji strukturalnej tych utworéw. Glownym celem niniejszej pracy jest zastosowanie dostgpnych w oprogra-
mowaniu Petrel narzedzi uczenia maszynowego do poprawy ciggtosci refleksow sejsmicznych w strefie pod nasunigciem Karpat, na
przyktadzie rejonu usytuowanego pomiedzy Debica a Rzeszowem (potudniowa Polska), a w konsekwencji bardziej wiarygodne odtwo-
rzenie budowy strukturalnej tego rejonu. Techniki uczenia maszynowego najczesciej stosowane sg w celach klasyfikacji, grupowania
i prognozowania réznego rodzaju danych, przy czym warto zaznaczy¢, ze wykorzystanie algorytmoéw machine learning do operacji
prowadzonych na danych odzwierciedlajacych zjawiska naturalne wymaga szerokiej wiedzy regionalnej w celu selekcji potencjalnych
wynikow, ktére moga by¢ nierzeczywiste. W badaniach prezentowanych w niniejszym artykule zastosowano nienadzorowane uczenie
maszynowe wykorzystujace algorytm samoorganizujacych si¢ map (SOM), bazujace na zbiorze danych wejsciowych w postaci wolu-
menow sejsmicznych 3D, zaimplementowanych do modelu w wersjach wybranych atrybutow sejsmicznych. Za pomoca wspomnianego
algorytmu zredukowano wielowymiarowo$¢ danych kilku atrybutéw sejsmicznych do dwuwymiarowej struktury. W konicowym etapie
prac, poprzez zastosowanie modelu sklasteryzowanego zapisu sejsmicznego, przeprowadzono analiz¢ otrzymanych wynikow w celu
wyeksponowania w obrazie sejsmicznym granic strukturalnych i tektonicznych charakterystycznych dla analizowanych formacji
skalnych. Dzigki zastosowaniu sieci neuronowych i algorytmu SOM udato si¢ uzyskaé obraz sejsmiczny o zdecydowanie wigkszej
ciggtosci refleksow sejsmicznych w poréwnaniu ze standardowym wolumenem sejsmicznym w wersji migracji czasowej po sktadaniu.
Ponadto na podstawie uzyskanych wynikéw mozliwe byto bardziej szczegétowe okreslenie zasiggéw przestrzennych poszczegdlnych
blokéw tektonicznych podioza mezo-paleozoicznego i neoproterozoicznego, jak rowniez odtworzenie dosy¢ szczegdlowej morfologii
powierzchni spagowej kenozoiku i gtéwnych uskokéow w obszarze badan.

Stowa kluczowe: nienadzorowane uczenie maszynowe, sie¢ neuronowa, samoorganizujace mapy (SOM), atrybuty sejsmiczne, inter-
pretacja strukturalna, podtoze Karpat.

ABSTRACT: The seismic image of Meso-Paleozoic and Neogene basement formations located under the marginal part of the Outer
Carpathians is typically characterized by an increased noise level and the presence of seismic artifacts. This significantly decreases the
reliability of structural interpretation for these formations in the mentioned zone. The main objective of this study was to apply machine
learning tools available in Petrel software to improve seismic image under the frontal part of the Carpathians and obtain a more reli-
able reconstruction of the structural architecture of the region, based on the example of the D¢gbica—Rzeszoéw area (southern Poland).
Machine learning techniques are most commonly used for classification, clustering, and predicting various types of data. It is worth noting
that applying machine learning algorithms to operations performed on data reflecting natural phenomena requires extensive regional
knowledge to identify potential results that may be unreal. This study utilized unsupervised machine learning with a Self-Organizing
Map (SOM) algorithm, based on a 3D seismic volume input dataset, implemented into the model using selected seismic attributes. The
SOM algorithm reduced the multidimensionality of several seismic attributes to a two-dimensional structure. In the final stage of the
study, by applying a clustered seismic model, the results were reviewed to highlight structural and tectonic boundaries in the seismic
image. By applying neural networks and the SOM algorithm, seismic reflector continuity was significantly improved compared to the
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standard post-stack time migrated seismic volume. Moreover, based on the results, it was possible to more precisely define the spatial
ranges of individual tectonic blocks within the Meso-Paleozoic and Neoproterozoic basement. A detailed morphology of the Cenozoic
base surface, as well as the main faults, could also be reconstructed in the study area.

Key words: unsupervised machine learning (ML), neural network (NN), self-organizing map (SOM), seismic attributes, structural

interpretation, Carpathians basement.

Wstep

Jako$¢ danych sejsmicznych ma istotne znaczenie w pro-
cesie interpretacji strukturalnej i litofacjalnej, stanowigcych
podstawe do poszukiwania, rozpoznawania, a takze eksploatacji
716z weglowodorow. Nowoczesne technologie bazujace na
sztucznej inteligencji dostarczaja nowych mozliwosci analizy
zapisu sejsmicznego, a zarejestrowane we wezesniejszych latach
dane sejsmiczne mogg zosta¢ na nowo przetworzone i prze-
analizowane. Techniki uczenia maszynowego, bedace czescia
sztucznej inteligencji (Al), byly juz wiclokrotnie stosowane
w réznego rodzaju badaniach, m.in. do wieloatrybutowej ana-
lizy obiektéw geologicznych, takich jak wysady solne (Di i in.,
2018), do prognozowania wiasnosci petrofizycznych konkretnej
formacji ztozowej (Topor, 2020, 2021), analizy danych geo-
chemicznych (Janiga, 2023) czy tez weryfikacji interpretacji
struktur paleokrasu, majacych znaczenie jako poziom zbior-
nikowy dla akumulacji weglowodoréw (Afonso i in., 2018).

Techniki uczenia maszynowego, powszechnie wykorzy-
stywane w analizach sejsmofacjalnych, sg jedng z bardziej
istotnych metod badawczych, pozwalajacych na uzyskanie
szczegotowe] wiedzy na temat rozprzestrzenienia i zmiennosci
konkretnych cech i parametrow analizowanych formacji skal-
nych (Wrona i in., 2018). Jednak jako$§¢ danych sejsmicznych,
jakimi dysponujemy w rejonie zapadliska przedkarpackiego
i przedgorza Karpat, nie zawsze jest wystarczajaca do $ledzenia
zmian w trendach strukturalnych, facjalnych czy litologicznych
z oczekiwang rozdzielczo$cig. W zwigzku z tym w procesie prac
interpretacyjnych dokonuje si¢ szeregu réznego typu dziatan
i operacji na danych sejsmicznych, majacych na celu uzyskanie
bardziej wiarygodnego i jednoznacznego odwzorowania uktadu
refleksOw sejsmicznych, a co za tym idzie — pozwalajacego na
bardziej szczegdtowsq interpretacje geologiczng lub ztozows.
Przyktadowo El-Dabaa i in. (2024) zastosowali nienadzorowane
uczenie maszynowe do usprawnienia wykrywania przebiegu
kanatéw rozprowadzajacych w czgsci podmorskiej delty Nilu.
Zastosowano tutaj podejécie wieloatrybutowe wraz z dekom-
pozycja spektralng. Do procesow uczenia uzyto algorytmu
samoorganizujacych si¢ map (SOM) wraz z analiza gtéwnych
sktadowych (Principal Component Analysis, PCA), a na pod-
stawie przeprowadzonych badan autorom udato si¢ wykonad
szczegotowe rozpoznanie skat zbiornikowych w obrebie stref
kanatowych, z podziatem na piaskowce, piaskowce zawodnio-
ne, piaskowce nasycone gazem. Ponadto wyinterpretowano
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granice woda—gaz, jak rowniez zidentyfikowano nadktad
w postaci serii lupkoéw. Natomiast przy zastosowaniu prost-
szych rozwigzan nienadzorowanego uczenia maszynowego
mozna okresli¢ przestrzenny rozktad wickszych obiektow
geologicznych. Przyktadowo w pracy Di i in. (2018) na zdjeciu
sejsmicznym 3D okonturowany zostal wysad solny.

Obszary pasm fatdowo-nasuwczych i basenow sedymen-
tacyjnych zlokalizowanych na przedpolu orogenow to cha-
rakterystyczne strefy, cechujace si¢ czesto znacznym stop-
niem zaburzen tektonicznych. Obraz sejsmiczny w podiozu
gorotworu charakteryzuje si¢ cz¢sto znacznie gorszg jakoscia
niz w sasiadujagcym obszarze zapadliska przedkarpackiego
usytuowanym na przedpolu orogenu (vide Pietsch i in., 1996;
Kusmierek 1 Baran, 2008; Stefaniuk i in., 2009; Urbaniec i in.,
2018). W przypadku analizowanej strefy brzeznej podtoza
Karpat staba czytelno$¢ obrazu sejsmicznego w znacznym
stopniu nie tylko utrudnia mozliwo$¢ sledzenia zmienno$ci
konkretnych parametrow analizowanych formacji w obrazie
sejsmicznym, ale czgsto nie pozwala nawet na w pelni wiary-
godne odtworzenie ogdlnej budowy strukturalnej i tektoniczne;j
rejonu.

Celem badan jest wykorzystanie atrybutow sejsmicznych
W procesie uczenia sieci neuronowej do bardziej wiarygodnego
odzwierciedlenia budowy strukturalnej podioza brzeznej strefy
Karpat. Wykorzystujac sieci neuronowe typu feed-forward, na
podstawie danych sejsmicznych i wyekstrahowanych z nich
atrybutéw, wykonano szereg obliczen iteracyjnych prowadza-
cych do uzyskania wynikowych modeli, réznigcych si¢ ukta-
dem strukturalnym i dynamika reflekséw otrzymanego obrazu
sejsmicznego. Do szczegdtowych analiz wybrano dwa modele,
ktére zdaniem autoréw cechowaly si¢ najwicksza wiarygodno-
scig geologiczng i ciggloscia refleksow sejsmicznych. Modele
te moga by¢ wykorzystane niezaleznie do r6znego rodzaju
analiz: strukturalnych, tektonicznych lub sejsmofacjalnych.

Pierwszy z wybranych modeli wynikowych miat za zadanie
oddzieli¢ strefy o wigkszym stopniu zaszumienia od stosunko-
wo ciggtych refleksow zwigzanych z utworami miocenu auto-
chtonicznego i mezo-paleozoicznego lub neoproterozoicznego
podloza. Natomiast celem drugiego z wytypowanych modeli
byto odzwierciedlenie morfologii analizowanych formacji
i wskazanie obecnosci nieciggto$ci w obrazie sejsmicznym,
pozwalajacych na bardziej szczegdtowa interpretacje efektow
oddziatywania procesow tektonicznych w utworach wystepu-
jacych w podtozu nasunigcia karpackiego.
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Rysunek 1. Potozenie obszaru badan na tle zasiggu zapadliska przedkarpackiego w Polsce; zasiggi jednostek geologicznych

wg Porebskiego i Warchota (2006)

Figure 1. Location of the study area against the background of the range of the Carpathian Foredeep in Poland; ranges of geological

units according to Porebski and Warchot (2006)

Zarys budowy geologicznej rejonu badan

Obszar badan usytuowany jest w centralnej czesci za-
padliska przedkarpackiego (rysunek 1), a w odniesieniu do
najstarszych pigter strukturalnych — na obszarze bloku ma-
lopolskiego.

Najnizsze pi¢tro strukturalne w obszarze badan stanowi
seria anchimetamorficznych utworéw neoproterozoiku (rysu-
nek 2), reprezentowana przez silnie zdiagenezowane utwory
klastyczne (w wigkszo$ci drobnoklastyczne), ktore w niewiel-
kim stopniu przeobrazone zostaty w wyniku oddziatywania
procesOw regionalnego metamorfizmu (Buta i Habryn, 2011;
Kowalska, 2012).

Kolejne pigtro strukturalne reprezentujg utwory gornego
paleozoiku, tj. seria wegglanowa srodkowego—gornego dewonu
1 dolnego karbonu, a lokalnie takze utwory klastyczne dolnego
karbonu (Moryc, 1992, 1996; Buta i Habryn, 2008).

W obrebie pietra mezozoicznego wystepuja glownie utwory
triasu 1 jury, a lokalnie w zachodniej czgéci obszaru réwniez
utwory kredy. Utwory triasu reprezentowane sg przez seri¢
skat klastycznych zaliczanych tradycyjnie do kompleksu li-
tostratygraficznego pstrego piaskowca dolnego i sSrodkowego
(Glowacki i Senkowiczowa, 1969; Szyperko-Teller i Moryc,
1988). Wypehiaja one gtownie obnizenia w paleomorfologii
powierzchni stropowej paleozoiku. Lokalnie w nadktadzie
wystepuja rowniez osady marglisto-wapienne, z wtracenia-
mi skal siarczanowych, zaliczane do retu (gérnego pstrego
piaskowca) i wapienia muszlowego (Urbaniec i in., 2013;
Moryc, 2014). Zalegajace na réznych stratygraficznie ogniwach

(od neoproterozoiku po Srodkowy trias) utwory jurajskie
(rysunek 2) reprezentowane sa gtownie przez osady najwyz-
szego keloweju oraz weglanowa serie jury gornej. Profil jury
gornej rozpoczyna kompleks pelitycznych osadéw wapienno-
-marglistych, dobrze udokumentowanych mikrofaunistycznie,
okreslany jako seria gagbkowo-globuligerinowa (Gutowski
iin., 2007). Wyzej w profilu utwordw jury gornej wystepuje
silnie zréznicowana facjalnie i litologicznie seria osadow wa-
piennych, dolomitycznych i marglistych o migzszo$ci rzedu
kilkuset metréw. Najbardziej charakterystycznym elementem
wyr6zniajacym si¢ w budowie geologicznej rejonu sg budowle
organiczne o charakterze mikrobialno-gabkowym (Morycowa
i Moryc, 1976; Gliniak i in., 2005; Matyja, 2009), ktorych
kompleksy mogg osiggac lokalnie do$¢ znaczne rozmiary,
0 migzszosci przekraczajacej nawet 500 m (Gliniak i in., 2005;
Gliniak i Urbaniec, 2005; Urbaniec, 2021). Wyzej, w profilu
jury gornej, zalega seria koralowcowo-onkolitowa, zawierajaca
liczne, rozkruszone i zabradowane fragmenty makrofauny.
Lokalnie pojawiajg si¢ takze przewarstwienia wapieni detry-
tycznych o znacznym udziale oolitéw (Ztonkiewicz, 2006,
2009). Najmtodszym ogniwem litostratygraficznym rozpozna-
nym w obszarze badan sg zréznicowane facjalnie ptytkowodne
osady weglanowe zaliczane do serii muszlowcowo-oolitowej
dolnej (Gutowski i in., 2007; Urbaniec i in., 2010). W obrebie
profilu tego witasnie ogniwa znajduje si¢ granica jura—kreda
(vide Gutowski i in., 2007; Matyja i Barski, 2007; Matyja,
2009; Urbaniec i in., 2010; Swietlik i in., 201 1). We wschodniej
czgsci obszaru badan utwory jury zostaly catkowicie usuniete
przez procesy erozji.
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Rysunek 2. Zgeneralizowany przekroj geologiczny przez obszar badan

Figure 2. Generalized geological cross-section through the study area

Utwory paleogenu w obszarze badan rozpoznane zostaty
w jego SE czgsci (Moryc, 1995), jednak ich zasieg w kierunku
N i NW nie jest dobrze rozpoznany. Mozna jedynie przypusz-
cza¢, ze wypehniajg one najwicksze obnizenia podloza, tzw.
paleodoliny, ktére w czasie pdznego paleogenu, az do prawdo-
podobnie wczesnego miocenu tworzyly w omawianym rejonie
swoiste bezodptywowe zaglebienia (Karnkowski, 2019).

Kompleks utworéw miocenu autochtonicznego podzieli¢
mozna na trzy zasadnicze jednostki litostratygraficzne: kla-
styczng seri¢ podewaporatowg, seri¢ ewaporatowg gornego
badenu oraz seri¢ utwordéw klastycznych badenu gérnego
i sarmatu. Utwory serii podewaporatowej reprezentowane sg
gléwnie przez pakiet skat ilastych i mutowcoéw, nalezacych
do formacji skawinskiej, ktéra w czesci wschodniej obszaru
zastepowana jest przez piaskowce baranowskie, wyksztatco-
ne gtéwnie jako piaskowce i piaski kwarcowe z wktadkami
mutowcow 1 itowcow. Migzszosci utwordw obydwu ogniw
litostratygraficznych wynoszg zazwyczaj od kilkunastu do
okoto 40 metrow, a jedynie lokalnie w strefach paleodolin
moga sie wyraznie zwigkszaé. Granice obydwu wspomnia-
nych wydzielen litostratygraficznych (tj. formacji skawinskiej
1 warstw baranowskich) nie zostaty jednoznacznie sprecy-
zowane, w zwigzku z tym w obszarach, gdzie moga si¢ one
zazebiad, istniejg spore trudnosci w ich rozréznieniu.

Wyzej w profilu utwordéw miocenu wystepuje seria ewapo-
ratowa badenu, ktora w obszarze badan reprezentowana jest
przez utwory siarczanowe (anhydryty i gipsy), wydzielane
jako formacja z Krzyzanowic (Alexandrowicz i in., 1982).

Zréznicowany pod wzgledem litologicznym i facjalnym
kompleks utworow silikoklastycznych zalegajacych powyzej
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serii ewaporatowej, cechujacy si¢ znaczng roznorodnoscia
litologiczna, w calosci zaliczany jest do formacji z Machowa
(Alexandrowicz i in., 1982).

Najmlodszym ogniwem stratygraficznym sg utwory czwar-
torzedu, tworzace luzna pokrywe o niewielkiej miazszosci,
najczesciej rzedu kilku metrow.

Charakterystyka danych sejsmicznych

Dane sejsmiczne podzielone sg na dwa odrgbne wolumeny
sejsmiczne: W1 oraz W2. Wolumen pierwszy (W 1), obejmujacy
poéinocno-zachodnia cz¢§¢ obszaru badan, charakteryzuje sig
dobrej jakosci obrazem sejsmicznym z zachowang dynamikg
zapisu. Znaczng cze$¢ profilu sejsmicznego zajmujg utwory
miocenu autochtonicznego. Wolumen drugi (W2) obejmuje
potudniowo-wschodnig cze$¢ obszaru badan. W glebiej po-
lozonych osiowych strefach paleodolin w podtozu utworéow
miocenu zalegajg utwory paleogenu. Ponocna czgs¢ wolumenu
W2 cechuje si¢ dobrym zapisem sejsmicznym o wysokiej
amplitudzie, zwlaszcza w spagowe;j partii utworow kenozoiku,
pomimo wyst¢gpowania w podlozu utworéw nalezacych do
réznych ogniw litostratygraficznych: mezozoicznych, paleozo-
icznych, a nawet neoproterozoicznych. Natomiast w zapisie
sejsmicznym w potudniowej czesci obszaru badan, gdzie
w nadktadzie pojawiaja si¢ utwory jednostek tektonicznych
Karpat, obraz na profilach jest w duzym stopniu nieczytelny,
co w konsekwencji znaczaco utrudnia interpretacje strukturalng
(rysunek 3). Do obliczen wybranych atrybutow sejsmicznych
oraz analiz strukturalnych wykorzystano wolumen danych
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Legenda:

SE

Rysunek 3. Przekr6j arbitralny (NW-SE) przez analizowane zdjgcie sejsmiczne 3D — poréwnanie zapisu sejsmicznego w cze$ci

poinocnej oraz potudniowej obszaru badan

Figure 3. Arbitrary line (NW-SE) through 3D seismic survey — comparison of the seismic record between northern and southern part

of the research area

sejsmicznych w wersji migracji czasowej po sktadaniu FX,
opracowany w Geofizyce Krakoéw S.A.

Metodyka procesu uczenia maszynowego

Uczenie maszynowe to wszechstronne narzgdzie z gatunku
sztucznej inteligencji, ktore umozliwia samoistne uczenie si¢
na podstawie dostarczonych danych bez potrzeby ingerencji
cztowieka (Jordan i Mitchell, 2015). Techniki uczenia ma-
szynowego najczesciej stosowane sg w celach klasyfikacji,
grupowania i predykcji réznego typu danych, a znaczacg role
podczas wykonywania tego typu zadan odgrywaja metody sta-
tystyczne, optymalizacja matematyczna, metody obliczeniowe,
jak rowniez prawdopodobienstwo. Wykorzystanie algorytmow
uczenia maszynowego do wykonywania operacji na danych
odzwierciedlajacych zjawiska naturalne wymaga szerokiej
wiedzy regionalnej w celu selekcji uzyskanych wynikow, ktore
moga by¢ nierzeczywiste i nieuzyteczne (Ma, 2019).

Metody uczenia maszynowego dzielg si¢ na dwa rodzaje:
konwencjonalne uczenie maszynowe (CML) oraz glebokie
uczenie (DL). CML wykorzystuje mniej rozbudowane modele
oparte na mniejszej liczbie warstw 1 prostszych potaczeniach
mig¢dzy danymi. Czesto stosowane algorytmy w przypadku
CML to m.in. k-$rednich (ang. k-means), losowy las decyzyjny
(ang. random forest), k-najblizszych sasiadow (ang. k-nearest
neighbours), klasyfikacja Bayesowska czy proste sieci neu-
ronowe typu feed-forward, uzywane w celach klasyfikacji
i predykcji (Ma, 2019). Glebokie uczenie (DL) maszynowe
jest bardzo zaawansowang technikg wykorzystujaca m.in. sieci
neuronowe, ktore autonomicznie wyodrebniaja wspolne cechy
i ich relacje. Uczenie obejmujgce glebokie sieci neuronowe
roéznych typow, auto-kodery i transformatory pozwala na two-
rzenie bardziej ztozonych modeli, sktadajacych si¢ z dziesigtek,
anawet setek warstw i miliondw parametrow (Lin i in., 2024).

Uczenie maszynowe w przypadku danych sejsmicznych
1 otworowych moze odbywac si¢ w sposob nadzorowany i nie-
nadzorowany. Wedhlug Lin i in. (2024) cz¢éciej w badaniach
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(ponad 75% publikacji) stosuje si¢ nadzorowany sposob uczenia
maszynowego (na danych rzeczywistych i syntetycznych).
Nienadzorowany sposob uczenia maszynowego pojawia si¢
w niespelna 8% publikacji, a gtdwnym celem tego sposobu jest
identyfikacja struktur, wzorcow i relacji w danych wejsciowych,
takich jak: amplituda, czgstotliwo$¢ czy faza (Hartono i in.,
2024) (rysunek 4).

Model uczenia sieci neuronowej
=] L ] L - 3

- iteracje

neurony @ & @ &

L] & B
dane wejsciowe

Rysunek 4. Uogdlniony schemat nienadzorowanego procesu
uczenia maszynowego (zrodto: Schlumberger, 2020)

Figure 4. Generalized scheme of the unsupervised machine
learning process (source: Schlumberger, 2020)

W przypadku nadzorowanego procesu uczenia maszynowe-
go znane s3 dane wejsciowe 1 wyjsciowe, czyli tzw. etykiety,
a caly proces skupia si¢ na poszukiwaniu cech i tgczeniu ich
mig¢dzy poszczegdlnymi danymi w ramach zdefiniowanych
przez etykiety wyjsciowe (Hastie i in., 2009). Natomiast nie-
nadzorowane uczenie maszynowe opiera si¢ na poszukiwaniu
relacji za pomocg dostepnych algorytméw bez zdefiniowane-
go wczesnie] modelu wyjsciowego, wykorzystujac wszyst-
kie dostgpne cechy danych wejsciowych. Dlatego rezultaty
uczenia nienadzorowanego wymagaja odpowiedniej kontroli
po zastosowaniu (Ma, 2019). Proste sieci neuronowe typu
feed-forward w clusteringu moga stosowaé rozne algoryt-
my w celu klasteryzacji danych. Jednym z algorytmow jest
mapa samoorganizujaca (ang. self-organizing map, SOM)
(Kohonen, 2001), zwana réwniez siecig Kohonena, ktorej
fundamentalnym paradygmatem jest konkurencyjne uczenie.
Algorytm ten powszechnie stosowany jest w prostych sieciach
neuronowych typu feed-forward ze wzgledu na mozliwosci
klasteryzacji nieliniowo skorelowanych danych. SOM jest
Scisle powigzany z metoda kwantyfikacji wektorowej (Haykin,
1999), co podwyzsza jego skutecznos¢ w klasyfikacji wielo-
wymiarowych danych, gdyz zachowuje on relacje metryczne
i topologiczne pomiedzy danymi (Matos i in., 2007). Algorytm
SOM wraz z analizg gtéwnych sktadowych (ang. principal
component analysis, PCA) wykorzystywane sg najczesciej
podczas nienadzorowanego uczenia maszynowego opartego
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na metodzie redukcji wymiarowosci (El-Dabaa i in., 2024).
Metoda ta polega na przedstawieniu danych wielowymiaro-
wych na niskowymiarowej siatce (np. 2D) tak, aby wektory
wag danych wejsciowych byty zmapowane do pobliskich
neurondéw na mapie (Qi 1 Castagna, 2013; Zhao i in., 2018).
Sie¢ neuronowa tworzona na bazie algorytmu SOM sktada
si¢ z warstwy wejsciowej, warstwy ukrytej, w ktorej znajdu-
je si¢ sie¢ neuronéw 2D (warstwa Kohonena) oraz warstwy
wyjsciowej (rysunek 5). Dane wejSciowe inicjujg powstanie
wektorow danych, zwanych wzorcami, w ktorych odbywa si¢
proces uczenia sieci neuronowej (Bauer i in., 2012).

warstwa wyjsciowa
klastry

L ] ] ®

warstwa ukryta

@ sie¢ neuronowa
(algorytm SOM)

._\ | Yo
=24 warstwa wejsciowa
- atrybuty danych sejsmicznych

Rysunek 5. Uogo6lniony schemat uczenia struktury sieci neurono-
wej algorytmem SOM (wedtug Zhu i in., 2022)

Figure 5. Generalized diagram of the neural network structure
learning by the SOM algorithm (based on Zhu et al., 2022)

Proces uczenia sieci neuronowej odbywa si¢ iteracyjnie.
Wstepnie zdefiniowano liczbe klastrow, do ktorych sie¢ ma
za zadanie przypisa¢ dane (iteracyjnie dostosowywano liczbg
klastrow, obserwujac wyniki). Kazda dana wej$ciowa przyj-
muje wektor prototypowy, ktory w kazdej iteracji pozostaje
taki sam. Nastepnie w procesie minimalizacji funkcji bledow
algorytm oblicza odleglo$¢ (zazwyczaj euklidesowq) migdzy
wektorem danej wejsciowe]j a wektorem wagowym neuronu.
Neuron, ktorego wektor wagowy jest najbardziej podobny do
wektora prototypowego danej wejsciowej, jest tzw. zwyciezca.
Kolejno po wybraniu zwycigskiego neuronu nastepuje aktu-
alizacja wektorow wagowych — zwycigskiego i sgsiednich do
niego neurondéw (vide Meyer 1 in., 2022; Zhang i Liu, 2002).
Iteracje te powtarzane sa, az do osiagniecia kryterium zatrzy-
mania (stanu rownowagi), ktore jest zdefiniowane na wstepie
W nastepujacy sposob:

* minimalny promien neuronéw od danych (neurony w ko-
lejnych iteracjach nie wykazuja juz zmian w potoZeniu lub
przemieszczenie jest niewielkie);

» osiggnieta zalozona liczba iteracji;

* brak zmian w przynalezno$ci danych do klastrow.



W zalezno$ci od ilosci i typu danych wej$ciowych mozna
stworzy¢ bardziej lub mniej rzeczywiste modele klasteryzacji
(Matos i in., 2007; Saraswat i Sen, 2012; Kourki i Riahi, 2014;
Diiin., 2018; Meyer i in., 2022).

Proces nienadzorowanego uczenia maszynowego
zastosowany w niniejszej pracy

W artykule opisano postgpowanie w procesie nienadzoro-
wanego uczenia maszynowego za pomoca sieci neuronowej
stosujacej algorytm self-organizing map do procesu klaste-
ryzacji atrybutéw sejsmicznych. Do wykonania nienadzoro-
wanego uczenia maszynowego wykorzystano modut ,,Neural
Net” zaimplementowany w oprogramowaniu Petrel firmy
Schlumberger.

Proces uczenia maszynowego podzielono na 5 krokow:
1. Wyselekcjonowanie danych wejsciowych (wybor odpo-

wiednich atrybutowych wolumendw sejsmicznych).

2. Okreslenie liczby klastréw (skupien), manualne wprowa-
dzenie liczby klastrow do uczenia.

3. Zastosowanie algorytmu SOM:

* inicjalizacja — wprowadzenie zadanej liczby skupien (na-

zywanych centroidami) w obrgb danych wejsciowych;

+ Kklasteryzacja — przypisanie danych do najblizszych neu-
rondéw (mierzone za pomocg odlegtosci euklidesowe;j);

 aktualizacja — obliczenie nowej pozycji sgsiadujacych
neurondéw w kierunku zwycieskich wektoréw na pod-
stawie wspotczynnika wagi, zaleznego od odleglosci
probki od wektora;

* iteracja — powtarzanie krokow klasteryzacji i aktualizacji
do momentu osiggnigcia ,,rownowagi”, tj. spetnienia
jednego z ponizszych warunkow:

— osiggnigta maksymalna liczba iteracji,

— niewielkie zmiany w pozycji neuronow,

— brak migracji pomiedzy klastrami (wszystkie dane
optymalnie sklastrowane).

4. Wizualizacja modelu i ewaluacja, ktore stanowity zasadni-
€zo najwazniejszy punkt w procesie uczenia maszynowego.
Wyniki uczenia maszynowego oceniane byty subiektywnie,
a proces odbywat si¢ iteracyjnie (poprzez zmiang liczby
klastréw we wstepnej fazie procesu). Gdy model spetnit
swoje zatozenie, proces nauki ulegt zakonczeniu.

5. Analiza i ocena wynikow.

Analiza danych wejsciowych

Danymi wej$ciowymi do procesu nienadzorowanego ucze-
nia maszynowego byly wyekstrahowane wolumeny danych
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sejsmicznych w wersjach wybranych atrybutow sejsmicznych.
Sposrod wielu atrybutéw sejsmicznych obliczonych w pro-
gramie Petrel wybrano kilka, ktore w najlepszym stopniu
odzwierciedlaly poszczegdlne cechy zapisu sejsmicznego
w rejonie badan:

e Cosinus Phase;

e Chaos;

e Tariance;

*  Amplitude Contrast;

e Instantaneous Bandwidth;

* Iso-frequency Component,

*  Dominant Frequency.

Charakterystyke i mozliwosci interpretacyjne poszcze-
g6lnych atrybutéw sejsmicznych przedstawiono w licznych
opracowaniach i publikacjach, w tym m.in. takich autorow jak:
Randen i in. (2000), Chopra i Marfurt (2007), Azevedo i Pereira
(2009), Barton i Urbaniec (2018), Schlumberger (2024).

Selekcja atrybutow do klasteryzacji

Sposrad kilku réznych kompilacji atrybutéw sejsmicz-
nych poddanych procesowi uczenia maszynowego do analizy
wybrano dwa zestawy atrybutow, ktore charakteryzowaty sie
optymalnym wspoétczynnikiem korelacji. W procesie selekcji
starano si¢ wybraé te atrybuty, ktére w najlepszym stopniu
odzwierciedlaty zmienno$¢ podstawowych parametrow danych
sejsmicznych, takich jak: faza, amplituda czy czgstotliwoscé.

Pierwszy z wybranych zestawow atrybutéw sejsmicznych
stanowit dane wej$ciowe dla pierwszej wersji nienadzorowane-
g0 uczenia maszynowego, ktore przeprowadzono na wolumenie
sejsmicznym W2, obejmujacym potudniowo-wschodnig czgs¢
obszaru badan. Ze wzglgdu na gorsza jakos$¢ zapisu sejsmiczne-
go w podtozu Karpat — do uzyskania zadowalajacych efektow
uczenia konieczne bylo zastosowanie wigkszej liczby atrybutow
sejsmicznych (Cosinus Phase, Variance, Amplitude Contrast,
Instantaneous Bandwidth, Chaos, Iso-frequency Component
oraz Dominant Frequency). W potudniowo-wschodniej czgsci
analizowanego zdjecia sejsmicznego najwigkszy wplyw na
jako$¢ obrazu sejsmicznego ma obecno$¢ zaburzonych tekto-
nicznie utwordéw nasuni¢cia karpackiego, czgsto cechujacych
si¢ duzymi warto$ciami upadow warstw. W konsekwencji obraz
sejsmiczny pod nasunigciem jest znacznie bardziej zaszumiony.
W zwigzku z tym gtéwnym celem uczenia maszynowego w tym
przypadku byto wykorzystanie klasteryzacji do oddzielenia
stref szumu od uzytecznego sygnatu sejsmicznego i pakietow
cigglych refleksow sejsmicznych (rysunek 6).

Drugi zestaw atrybutéw sejsmicznych wybranych do nie-
nadzorowanego uczenia maszynowego byt analogiczny do
zestawu pierwszego, z wyjatkiem atrybutu Cosinus Phase,
ktory odrzucono, gdyz atrybut ten znaczaco wptywat na wynik
klasyfikacji, co zostato wychwycone podczas procesu uczenia.
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Rysunek 6. Schemat wybranych danych wejsciowych (atrybutdow sejsmicznych) do procesu nienadzorowanego uczenia maszynowego

(wolumenu sejsmiczny W2) — klasteryzacja |

Figure 6. Diagram of selected input data (seismic attributes) for the unsupervised machine learning process (seismic volume W2) —

Cluster analysis |

Standard seismic
version

Rysunek 7. Schemat wybranych danych wejsciowych (atrybutow sejsmicznych) do procesu nienadzorowanego uczenia maszynowego

(wolumen sejsmiczny W2) — klasteryzacja 11

Figure 7. Diagram of selected input data (seismic attributes) for unsupervised machine learning process (seismic volume W2) —

Cluster analysis 11

Zatozonym celem klasteryzacji byto eksperymentalne uwypu-
klenie granic strukturalnych i tektonicznych poprzez zastosowa-
nie modelu sklasteryzowanego zapisu sejsmicznego, w oparciu
0 wspomniane powyzej atrybuty sejsmiczne (rysunek 7).
Nienadzorowane uczenie maszynowe charakteryzuje si¢
manualnag inicjalizacja liczby klastrow. W trakcie kolejnych
iteracji liczba klastrow w procesie uczenia ustalana byta pod
katem uzyskania jak najwierniejszego odwzorowania charak-
terystycznych cech obrazu sejsmicznego i jego zmiennosci.
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Wyniki analizy modelu treningowego

Roznice pomiedzy uzyskanymi modelami

W ramach przeprowadzonych badan przetestowano dwa
modele sieci neuronowych SOM, rozniace si¢ liczbg wytypo-
wanych atrybutow.

Do uczenia w modelu nr 2 nie uzyto atrybutu Cosinus
Phase, ktéry znaczaco wpltywal na koherencje danych po kla-
steryzacji. Wyniki modelowan przedstawiono na przyktadach
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pieciu profili sejsmicznych, ktérych lokalizacje zaznaczono
na rysunku 8.

Jak juz wspomniano, zatozeniem pierwszej wersji uczenia
sieci neuronowej byto oddzielenie stref szumu sejsmicznego
od pakietéw ciaglych refleksow sejsmicznych, wystepujacych
w podtozu jednostek tektonicznych Karpat w potudniowo-
-wschodniej czesci obszaru badan. Uzyskany przez sie¢ neu-
ronow3 sklasteryzowany obraz sejsmiczny w bardzo dobrym
stopniu odwzorowal przebieg granicy pomigdzy utworami
miocenu w podtozu nasunigcia karpackiego a zréznicowanym
stratygraficznie i litologicznie mezo-paleozoicznym podtozem
(rysunek 9). Uktad sieci nieciagtosci tektonicznych po procesie
klasteryzacji wydaje si¢ bardziej jednoznaczny w poréwnaniu
ze standardowa wersja migracji czasowej po sktadaniu. W toku

Legenda: nienadzorowanego uczenia maszynowego wybrano wersje

@ Zasigg utwordw nasunigela  ____ Lokalizacia przekroju z podzialem na 8 klastréw. Klastry 2 oraz 4-7 zwigzane sg
kamackiego sejsmicznego 53 . . .

z brakiem sygnatu lub szumem sejsmicznym, natomiast kla-

B 'éama&mw’" mmﬁ“’“ stry 0, 1 1 3 odpowiadaja strefom bardziej ciagtych refleksow

__ Lokalizaca przekroju — Lokalizacja przekeoju sejsmicznych. Dzigki zastosowaniu takiej liczby klastrow dane

g v sejsmiczne, szczego6lnie w strefie pod nasuni¢ciem Karpat,

Rysunek 8. Szkic lokalizacji analizowanych przekrojow zostaly podzielone w sposob najbardziej wiarygodny. Przy

sejsmicznych probach zastosowania innej liczby klastrow obraz byt zbyt

Figure 8. Location of analyzed seismic sections mocno zgeneralizowany lub nieczytelny.

Rysunek 9. Przekroj sejsmiczny S1: a) w wersji migracji czasowej po sktadaniu, b) model wynikowy uczenia sieci neuronowej algoryt-
mem SOM - klasteryzacja [

Figure 9. Seismic section S1: a) post-stack time migration version, b) resulting model of neural network learning by the SOM algorithm
— cluster analysis [
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Druga wersja modelu uczenia sieci neuronowej miata
za zadanie odzwierciedli¢ warunki strukturalno-tektoniczne
w skrajnie brzeznej strefie nasuni¢cia Karpat. Skomplikowana
sytuacja tektoniczna w tej strefie wymagata glebszego rozpo-
znania i szczegotowej analizy. Wyniki uzyskane na podstawie
uczenia sieci neuronowej pozwolily na analize przebiegu
nieciagtosci i granic tektonicznych w podtozu nasunigcia,
a zastosowany podziat na klastry przyniost dobre efekty w za-
kresie odwzorowania tektoniki rejonu badan (rysunek 10).
Szczegodlng uwage zwracaja blokowy podziat podtoza mezo-
paleozoicznego oraz wyraznie zarysowujace si¢ zmiany facjalne
w obrebie utworow miocenu autochtonicznego. W przypadku
modelu drugiego zdecydowano si¢ na bardziej szczegotows
analize zmiennos$ci obrazu sejsmicznego. Wybrano wersje
podziatu danych sejsmicznych na 12 klastréw, ktore z wieksza
szczegotowoscig odwzorowujg zapis sejsmiczny. Zasadniczo
klastry od 0 do 6 wskazuja na strefy cigglego zapisu sejsmicz-
nego o zréznicowanych upadach i dynamice, natomiast klastry
od 7 do 11 odpowiadaja strefom szumu sejsmicznego. Warto
zauwazy¢, ze strefy o wigkszym stopniu zaszumienia (kla-
stry 7—11) obecne sg zarowno w obrgbie jednostek tektonicz-
nych Karpat, jak i w niektérych warstwach zlokalizowanych

w obrgbie utworéw miocenu autochtonicznego zapadliska
przedkarpackiego (rysunek 10).

Zatozeniem pracy badawczej byto zaproponowanie stosun-
kowo prostej metody stuzacej do weryfikacji zapisu danych
sejsmicznych pod katem interpretacji strukturalnej w strefach
silnie zaburzonych i niejednoznacznych. Analiza wykonanych
modeli nienadzorowanego uczenia maszynowego siecig neuro-
nowg uczong algorytmem SOM pozwala na uzyskanie dodatko-
wych informacji pozwalajacych na weryfikacj¢ dotychczasowej
interpretacji danych sejsmicznych w strefach pod nasunieciem
Karpat. Na rysunku 11 przedstawiono poréwnanie standardowe-
g0 obrazu sejsmicznego na wersji migracji czasowej po sktadaniu
(poststack) z uzyskanymi wynikami sklasteryzowanych modeli
sieci neuronowej. Otrzymana zmienno$¢ sklasteryzowanego
obrazu sejsmicznego wymagata przetestowania kilku roznych
rozwiazan dla poszczegdlnych modeli, w tym odpowiednie-
go dostosowania palet kolorow i odcieni dla poszczegdlnych
klastrow. W centralnej czg$ci przekroju w wersji migracji po
sktadaniu widoczna jest rozlegta strefa szumu sejsmicznego,
obejmujaca swym zasiegiem utwory miocenu i ich podtoza,
w obrebie ktorej bardzo trudno byloby wykona¢ interpretacje
horyzontow sejsmicznych lub stref dyslokacyjnych. Zastosowane

3000 4000 5000m

; 1000
O —

2000

Rysunek 10. Przekroj sejsmiczny S2: a) w wersji migracji czasowej po sktadaniu, b) model wynikowy uczenia sieci neuronowe;j

algorytmem SOM — klasteryzacja I1

Figure 10. Seismic section S2: a) post-stack time migration version, b) resulting model of neural network learning by the SOM algorithm

— cluster analysis 11
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Rysunek 11. Przekréj sejsmiczny S3: a) w wersji migracji czasowej po sktadaniu, b) model wynikowy uczenia sieci neuronowej
algorytmem SOM — klasteryzacja I, ¢) model wynikowy uczenia sieci neuronowej algorytmem SOM — klasteryzacja II

Figure 11. Seismic section S3: a) post-stack time migration version, b) resulting model of neural network learning by the SOM algorithm
— cluster analysis I, ¢) resulting model of neural network learning by the SOM algorithm — cluster analysis II

w ramach niniejszej pracy techniki uczenia maszynowego po-
zwolity na uzyskanie w tej strefie bardziej czytelnego obrazu
sejsmicznego, umozliwiajacego przeprowadzenie bardziej wia-
rygodnej interpretacji strukturalnej. Uzyskany obraz sejsmofacji
wyraznie wskazuje na budowe blokowa mezo-paleozoicznego
i neoproterozoicznego podtoza, ktore w swej historii poddawane
byto oddziatywaniu r6znorodnych zjawisk tektonicznych, czego
efektem jest charakterystyczny znaczny stopnien dezintegracji
tych utwordow (rysunek 11b). Na sklasteryzowanym obrazie
sejsmicznym znacznie lepiej widoczne sg zmienno$ci katowe

w obrebie poszczegdlnych blokow tektonicznych. W obrazie
tym wyrazniej zaznaczaja si¢ rowniez strefy uskokowe, co
daje mozliwo$¢ doktadniejszego przesledzenia charakteru
tektonicznego analizowanej strefy przedgorza Karpat.

Zastosowanie wynikow badan

Wynikiem opracowania dwdch niezaleznych modeli, po-
wstatych z wykorzystaniem technik nienadzorowanego uczenia
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maszynowego, s3 uzyskane dwa rozne obrazy sejsmiczne,
charakteryzujace si¢ indywidualnymi cechami, ktére moga by¢
wykorzystywane do réznych rodzajow interpretacji (struktu-
ralnej, tektonicznej, facjalnej itp.). Modele te wniosty szereg
dodatkowych informacji na temat budowy utworéw miocenu
1 mezo-paleozoiku w podtozu Karpat, gdzie zapis sejsmiczny
cechuje si¢ wyraznie obnizong jako$cia i wiarygodnoscia.
W zwiazku z tym uzyskane wyniki moga by¢ wykorzystane
jako materiat pomocniczy do rozpoznania budowy struktural-
nej tej trudnej do interpretacji strefy. Ponadto analiza facjalna
1 tektoniczna obszaru pod nasuni¢ciem Karpat oparta na wersji
wolumenu sejsmicznego z zaimplementowanymi wynikami
uczenia maszynowego moze by¢ bardziej szczegotowa i wia-
rygodna w poréwnaniu z wykorzystaniem do tego celu stan-
dardowych danych sejsmicznych w wersji migracji czasowej
po sktadaniu lub przed sktadaniem.

Przyktad interpretacji potencjalnych nieciaglosci tekto-
nicznych wykonanej na podstawie danych sejsmicznych po
klasteryzacji przedstawiono na rysunku 12. W standardowym
ujeciu, bazujagcym na danych sejsmicznych w wersji migracji
czasowej, interpretacja dyslokacji w podtozu Karpat byta bar-
dzo trudna, gdyz zapis sejsmiczny jest w tej strefie szczatkowy

i niejednoznaczny (rysunek 12a). Jednak w wersji z zastosowa-
niem wynikOow uczenia maszynowego granice poszczegolnych
blokow tektonicznych zarysowujacych si¢ w utworach podtoza
sg znacznie bardziej jednoznaczne do interpretacji, podobnie jak
uskoki w zalegajacych powyzej utworach miocenu autochto-
nicznego. Ponadto na uzyskanych po klasteryzacji obrazach sej-
smicznych znacznie tatwiej wyinterpretowa¢ mozna powierzch-
ni¢ spagowa utwordw miocenu i paleogenu, a tym samym
z wiekszg wiarygodnos$cig odtworzy¢ obecng morfologie pod-
loza mezo-paleozoicznego i neoproterozoicznego. Otrzymany
w wyniku klasteryzacji obraz przystropowej partii podtoza
cechuje si¢ zdecydowanie wigksza ciggloscia przestrzenng
i dynamika, a tym samym jest on bardziej jednoznaczny.
Model o bardziej szczegdtowej charakterystyce klastrow
okazat si¢ uzyteczny w kontekscie analiz strukturalnych i facjal-
nych. Na rysunku 13 przedstawiono interpretacje tektoniczng
wraz z wyznaczonymi na podstawie sejsmofacji blokami tekto-
nicznymi (fioletowe prostokaty), oddzielonymi powierzchniami
dyslokacji. Z kolei niebieskie elipsy wskazuja przypuszczalne
strefy zalegania utwordéw paleogenu, w wickszosci reprezen-
towanych przez serie skal zlepiencowych, z wktadkami pia-
skowcow 1 mutowcow, odpowiadajace formacji z Ractawowki

SE

-2500

refa pod nasunieciem Karpat & ==

e =
=T
LT

e N e W i

g T
&%ﬁﬁ

}“%@

1000
EEE

Rysunek 12. Przekroj sejsmiczny S4 z interpretacja nieciaglosci: a) w wersji migracji czasowej po sktadaniu, b) model wynikowy

uczenia sieci neuronowe;j algorytmem SOM — klasteryzacja [

Figure 12. Seismic section S4 with discontinuities interpretation: a) post-stack time migration version, b) resulting model of neural

network learning by the SOM algorithm — cluster analysis I
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Rysunek 13. Przekroj sejsmiczny S5 z interpretacja nieciaglosci: a) w wersji migracji czasowej po sktadaniu, b) model wynikowy
uczenia sieci neuronowe;j algorytmem SOM — klasteryzacja II; fioletowe prostokaty — wydzielone bloki tektoniczne, niebieskie elipsy

— strefy wystgpowania utworéw paleogenu

Figure 13. Seismic section S5 with discontinuities interpretation: a) post-stack time migration version, b) resulting model of neural
network learning by the SOM algorithm — cluster analysis II; purple rectangles — distinguished tectonic blocks, blue ellipses — Paleogene

formations zones

w ujeciu Moryca (1995). Utwory te wypetniaja najwicksze
paleomorfologiczne zagl¢bienia, ktérymi najczesciej sg osiowe
partie gtebokich paleodolin.

Dyskusja i wnioski

Przeprowadzone analizy obrazu sejsmicznego po procesie
nienadzorowanego uczenia maszynowego siecig neuronowsg
pozwolity na bardziej szczegdtowe rozpoznanie budowy struk-
turalnej utwordw miocenu i ich mezo-paleozoicznego oraz
neoproterozoicznego podtoza w brzeznej strefie zalegania
allochtonicznych utworéw jednostek tektonicznych Karpat.
Na bazie dostepnych wolumenéw sejsmicznych w wersji
migracji czasowej po sktadaniu obliczono szereg atrybutow
sejsmicznych, niezbednych do zaimplementowania w procesie
uczenia maszynowego. W wyniku obliczen uzyskano dwie
sieci neuronowe, powstate w wyniku zastosowania algorytmu
SOM, ktore moga by¢ wykorzystane do r6znego rodzaju analiz
otrzymanych obrazéw sejsmicznych.

Techniki uczenia maszynowego wykorzystywane sa po-
wszechnie w réznego rodzaju badaniach formacji skalnych.
Skupiajac sie na mozliwosciach, jakie oferuje sztuczna inteligen-
cja w zakresie danych sejsmicznych, mozna tego typu techniki
zastosowac do znajdowania konkretnych, charakterystycznych
cech zapisu sejsmicznego. Cechy te mozna bowiem powigzac
z odzwierciedleniem zakreséw zmiennosci konkretnych para-
metrow (np. fizykochemicznych), charakterystycznych dla po-
szczegolnych formacji skalnych, ktore z kolei w okreslony spo-
sOb zapisuja si¢ w obrazie sejsmicznym. Znajdujac powiazania
pomiedzy tymi cechami, mozna stwierdzi¢ ich powtarzalnos¢
W przestrzeni, co jest mozliwe do zweryfikowania w dalszym
etapie badan na podstawie interpretacji danych otworowych.
Dzigki technikom uczenia maszynowego mozna uzyskac nie-
mozliwg do wskazania przez czlowieka korelacje miedzy
poszczegdlnymi cechami danych sejsmicznych.

Efektywne rozpoznanie zbiornikowe na podstawie sto-
sunkowo niewielkiej iloéci danych (dane sejsmiczne oraz
otwor) za pomocg technik uczenia maszynowego sprawia, ze
wykorzystane metody badawcze wykazuja wysoka uzytecznosé
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w rozpoznaniu zmienno$ci facjalnej formacji skalnych. W ra-
mach niniejszej pracy zastosowanie technik nienadzorowanego
uczenia maszynowego pozwolilo na wykartowanie granic
1 odtworzenie geometrii poszczegdlnych blokow tektonicznych
budujacych podloze Karpat i zapadliska przedkarpackiego.
W badaniach skoncentrowano si¢ na ocenie mozliwosci za-
stosowania tych technik do analizy rzeczywistych zalezno$ci
dla danych sejsmicznych o gorszej jakoSci, zarejestrowanych
w podtozu stref faldowo-nasuwczych. Wytypowane do ana-
lizy zdjgcie sejsmiczne obejmuje brzezng strefe nasunigcia
jednostek karpackich oraz czg¢s¢ zapadliska przedkarpackiego
rozwinigtego u czota orogenu. W poludniowo-wschodnie;j
czesci zdjecia, w strefie nasunigcia, obraz uzyskany w podiozu
gorotworu karpackiego charakteryzuje si¢ bardzo stabg jako-
$cig, w tym duza ilo$cig szumu i brakiem ciggtosci refleksow
sejsmicznych. Strefa ta sprawia wiec wiele trudnosci, zar6wno
w interpretacji strukturalne;j, jak i litofacjalne;.

Dzi¢ki zastosowaniu sieci neuronowych i algorytmu SOM
z wykorzystaniem atrybutdw sejsmicznych udato si¢ uzyskac
obraz o zdecydowanie lepszej jakosci i wickszej cigglosci re-
fleksow sejsmicznych zarowno w przypadku utwordw miocenu,
jak i formacji skalnych zalegajacych w ich podtozu (tj. mezo-
-paleozoicznych oraz neoproterozoicznych). Otrzymane wyniki
okazaty si¢ bardzo pomocne w weryfikacji uktadu struktural-
nego i tektoniki obszaru pod nasunigciem Karpat w porow-
naniu z wykorzystaniem do tego celu standardowych danych
sejsmicznych w wersji migracji czasowe;.

Szczegodtowa analiza obrazéw sejsmicznych uzyskanych
dzieki zastosowanym technikom uczenia maszynowego po-
zwolita na wysuniecie dodatkowych wnioskéw na temat po-
dzialu podtoza na bloki tektoniczne, przebiegu dyslokacji oraz
odtworzenie szczegotowej morfologii powierzchni spagowe;j
kenozoiku w obszarze badan.

Artykut powstal na podstawie pracy statutowej pt. Analiza sej-
smiczna formacji wodonosnej pod kqtem szczegotowego rozpozna-
nia strukturalnego heterogenicznosci zbiornika; praca INiG — PIB;
nr zlecenia: 0069/SR/2024, nr archiwalny: DK-4100-0054/2024.
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