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Nowe podejście analityczne łączenia technik porozymetrii rtęciowej i adsorpcji gazowej 
na przykładzie łupków warstw inoceramowych jednostki dukielskiej 

A new analytical approach combining mercury intrusion and gas adsorption techniques – example 
of Inoceramian shales from the Dukla Unit 

Lidia Dudek 

Instytut Nafty i Gazu – Państwowy Instytut Badawczy 

STRESZCZENIE: Celem pracy było scharakteryzowanie przestrzeni porowej łupków warstw inoceramowych jednostki dukielskiej. Próbki 

zostały pobrane osobiście przez autorkę publikacji z sześciu odsłonięć w następujących miejscowościach: Daliowa, Lipowiec, Wola Wyżna, 

Dołżyca, Roztoki Górne, Zubeńsko. Struktura porowa próbek łupków warstw inoceramowych była mierzona metodą porozymetrii rtęciowej 

(ang. mercury injection capillary pressure, MICP) w temperaturze otoczenia oraz metodą adsorpcji argonu w temperaturze wrzenia ciekłego 

azotu (−195,8°C). Metoda porozymetrii rtęciowej (MICP) oraz metoda analizy izotermy adsorpcji gazowego argonu zostały zastosowane do 

uzyskania wartości parametrów przestrzeni porowej, w tym rozkładu wielkości porów. Teorii Barretta, Joynera i Halendy (BJH) skojarzonej 

z teorią Brunauera, Emmetta i Tellera (BET) użyto do określenia rozkładu rozmiarów mikro- i mezoporów oraz powierzchni właściwej 

(ang. specific surface area, SSA). Na podstawie badań adsorpcyjnych obliczono powierzchnię właściwą SSA, całkowitą ilość zaadsorbowa-

nego gazu oraz udział mikro-, mezo- i makroporów. Ze względu na różnice w wynikach dla skał z tego samego odsłonięcia, wykonano do-

datkowe badania dyfrakcji rentgenowskiej (XRD). Analiza struktury materiałów krystalicznych pozwoliła zauważyć, że w przypadku łup-

ków warstw inoceramowych, zawierających powyżej 14% objętościowych kwarcu, możliwość interpretacji przestrzeni porowej za pomocą 

analiz MICP staje się trudniejsza i najprawdopodobniej obarczona jest artefaktem. Zauważono, że całkowita objętość przestrzeni porowej 

zmniejsza się z procentowym zwiększaniem zawartości kwarcu. Prawdopodobnie mamy do czynienia z sytuacją, w której rtęć penetruje 

przestrzeń porową o znacznie mniejszych średnicach, niż wynikałoby to z zastosowanych ciśnień. Również zawartość kalcytu koreluje 

w serii próbek z parametrem objętości przestrzeni porowych. Im większa jest ta zawartość, tym mniejsze wartości objętości przestrzeni po-

rowych. Oznacza to, że międzyziarnowa przestrzeń porowa, prawdopodobnie na skutek zjawiska cementacji kalcytem, będzie obniżana dla 

badanej serii łupków warstw inoceramowych z dużą zawartością kalcytu. Łączenie informacji uzyskanych technikami: MICP, adsorpcji 

argonu, XRD – dostarcza uzupełniających się wskazówek o strukturze porowej badanych próbek łupków warstw inoceramowych pobranych 

z powierzchni. 

Słowa kluczowe: łupki warstw inoceramowych, adsorpcja, porozymetria rtęciowa, powierzchnia właściwa, objętość porowa. 

ABSTRACT: The aim of this paper is to characterize the pore space of inoceramian shales from the Dukla Unit. Samples were collected 

from outcrops in the following locations: Daliowa, Lipowiec, Wola Wyżna, Dołżyca, Roztoki Górne, and Zubeńsko. The pore structure of 

the inoceramus shale samples heated to 105°C was measured using mercury porosimetry (Mercury Injection Capillary Pressure, MICP) at 

ambient temperature and argon adsorption at the boiling point of liquid nitrogen (–195.8°C). Mercury injection capillary pressure (MICP) 

and argon gas adsorption were used to obtain porosity and pore size distribution parameters. The Barrett, Joyner and Hallenda (BJH) theory, 

associated with the Brunauer, Emmett and Teller (BET) method, was used to determine the distribution of micro- and mesopore sizes and the 

specific surface area (SSA). Based on adsorption tests, the specific surface area (SSA), the total amount of adsorbed gas and the proportion 

of micro-, meso- and macropores were calculated. Due to differences in the results for rocks from the same outcrop, additional X-ray diffrac-

tion (XRD) tests were performed. Analysis of the structure of crystalline materials showed that, in the case of inoceramian shales with 

a quartz content above 14%, the interpretability of MICP pore space decreases with increasing quartz content, due to mercury penetrating 

spaces between quartz crystals during casting and filling significantly smaller pore diame-ters than would be expected from the pressures 

applied. The calcite content also has a decisive influence on the pore space values for decreasing diameters. Calcite, with its quartz cement-

ing properties, means that an increase in its presence has a negative effect on the pore space for decreasing pore diameters. This indicates that 

quartz cemented with calcite will have a significantly lower pore volume as the pore diameters decrease, which in turn translates into a sig-

nificantly lower amount of small-diameter pore space in inoceramus shales with a high calcite content. Combining information from MICP, 

argon adsorption and XRD techniques provides complementary insights into the pore structure of each porous medium, in this case surface-

collected inoceramus shale samples. 

Key words: inoceramian shales, adsorption, mercury injection capillary pressure (MICP), specific surface area (SSA), pore volume. 
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Spektrometria fluorescencji rentgenowskiej (XRF) do pomiaru pierwiastków w próbkach 
geologicznych – wstępna walidacja metodyki badań 

X-ray fluorescence spectrometry for elemental measurement in geological samples – preliminary 
validation of the research methodology 

Ewa Krzeszowska 

Instytut Nafty i Gazu – Państwowy Instytut Badawczy 

STRESZCZENIE: Spektroskopia fluorescencji rentgenowskiej (XRF) stanowi powszechnie wykorzystywaną technikę analityczną umożli-

wiającą zarówno jakościowe, jak i ilościowe oznaczanie składu pierwiastkowego różnych materiałów. Dzięki nieniszczącemu charakterowi 

analizy, wysokiej precyzji wyników oraz krótkim czasom oznaczeń technika ta znajduje coraz szersze zastosowanie w naukach o Ziemi, 

stając się jedną z podstawowych metod analizy chemicznej próbek geologicznych. Artykuł prezentuje wstępne wyniki walidacji metodyki 

analizy próbek geologicznych z wykorzystaniem spektrometrii (XRF), ze szczególnym uwzględnieniem wpływu preparatyki próbek na ja-

kość uzyskiwanych wyników. Przygotowanie próbek do analizy XRF odgrywa kluczową rolę w zapewnieniu powtarzalności i odtwarzalno-

ści analizy składu chemicznego próbek geologicznych. Badania przeprowadzono na próbkach skał reprezentujących różne typy litologiczne, 

a tym samym zróżnicowany skład chemiczny. Dla każdej próbki przygotowano pastylki prasowane przy użyciu dwóch wariantów ustawień 

prasy (10 ton/10 s oraz 20 ton/10 s). Otrzymane wyniki charakteryzowały się wysoką powtarzalnością (precyzją) pomiarów (współczynnik 

zmienności CV < 3%). Stwierdzono, że w przypadku analizowanych próbek wykonanie pastylek prasowanych przy ustawieniu prasy 

10 ton/10 s pozwala na uzyskanie preparatów o jakości wystarczającej do celów analitycznych. Porównanie wyników oznaczeń składu che-

micznego badanych próbek geologicznych otrzymanych metodą XRF z danymi referencyjnymi (uzyskanymi metodą spektrometrii mas ze 

sprzężoną indukcyjnie plazmą, ICP-MS) wykazało bardzo wysoką zgodność. Zarówno dla pierwiastków głównych, jak i większości pier-

wiastków śladowych otrzymano współczynniki korelacji liniowej na poziomie R ≥ 0,99, a wartości procentowego odzysku mieściły się naj-

częściej w przedziale 80–120%, co uznaje się za akceptowalne w badaniach geochemicznych. 

Słowa kluczowe: spektrometr fluorescencji rentgenowskiej z dyspersją energii EDXRF, ICP-MS, geochemia, pierwiastki główne i śladowe. 

ABSTRACT: X-ray fluorescence (XRF) spectroscopy is a widely used analytical technique that enables both qualitative and quantitative 

determination of the elemental composition of various materials. Due to its non-destructive nature, high analytical precision, and short analy-

sis times, this method is increasingly applied in Earth sciences, becoming one of the fundamental tools for chemical analysis of geological 

samples. The article presents preliminary results of validation of the method for the analysis of geological samples using XRF spectrometry, 

with particular emphasis on the impact of sample preparation on the quality of the obtained results. Sample preparation plays a crucial role in 

ensuring the repeatability and reproducibility of chemical composition analyses of geological materials. The study was conducted on rock 

samples representing different lithological types and, therefore, varying chemical compositions. Pressed pellets were prepared for each sam-

ple using two pressing conditions (10 tons/10 s and 20 tons/10 s). The obtained results showed high measurement repeatability (precision), 

with coefficient of variation (CV) below 3%. It was found that, for the analyzed samples, pellets pressed under 10 tons for 10 seconds were 

of sufficient quality for analytical purposes. A comparison between the chemical composition data obtained via XRF and reference values 

determined by inductively coupled plasma mass spectrometry (ICP-MS) revealed a very high level of agreement. For both major and most 



trace elements, linear correlation coefficients were R ≥ 0.99, and percent recovery values generally ranged between 80% and 120%, which is 

considered acceptable in geochemical research. 

Key words: energy dispersive X-ray fluorescence EDXRF, ICP-MS, geochemistry, major and trace elements. 
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Różnorodność mineralogiczna osadów powstających w instalacjach eksploatacyjnych 
węglowodorów 



Mineralogical diversity of sediments formed in hydrocarbon exploitation installations 

Sylwia Kowalska 

Instytut Nafty i Gazu – Państwowy Instytut Badawczy 

STRESZCZENIE: W procesie wydobycia węglowodorów w różnych częściach instalacji, którą przepływają media złożowe, mogą się two-

rzyć różnego rodzaju osady. Na ich powstawanie ma wpływ kilka niezależnych czynników: skład mineralny ośrodka skalnego, z  którego 

przypływają węglowodory, skład płuczek wiertniczych wykorzystywanych podczas wiercenia otworów, skład środków chemicznych stoso-

wanych podczas zabiegów intensyfikacji wydobycia i czyszczenia instalacji, jak również zjawisko korozji. Różnorodność składników mine-

ralnych i chemicznych przepływających przez instalację wydobywczą sprawia, że analiza ich składu mineralnego wymaga zastosowania 

całego zestawu metod. Osady stanowią mieszaninę faz mineralnych pochodzących ze złoża oraz wytrącających się z roztworu pod wpływem 

zmieniających się warunków fizykochemicznych. W celu poprawnej identyfikacji składników osadu i ilościowej analizy składu mineralnego 

próbek niezbędne jest połączenie co najmniej trzech metod badawczych: dyfrakcji rentgenowskiej (XRD), fluorescencji rentgenowskiej 

(XRF) oraz obserwacji w mikroskopie skaningowym z analizą składu chemicznego w mikroobszarze SEM-EDS. Minerałami najczęściej 

występującymi w osadach są węglany (kalcyt, dolomit, syderyt), siarczki (piryt, pirotyn, makinawit, greigit), siarczany (anhydryt, baryt, 

gips), tlenki i wodorotlenki żelaza (magnetyt, getyt, lepidokrokit), chlorki (halit, sylwin, chlorki żelaza), krzemiany i glinokrzemiany (kwarc, 

skalenie, miki, minerały ilaste). Niekiedy jednak obserwuje się również minerały niewystępujące standardowo w skałach osadowych w Pol-

sce, takie jak octan wapnia i żelaza czy wodorowęglany potasu i sodu. Artykuł ma na celu prezentację ogromnej zmienności składu mineral-

nego powyższych osadów. Wieloetapowość zabiegów prowadzonych w otworach wydobywczych i instalacjach eksploatacyjnych powoduje, 

że określenie, z jakimi fazami mamy do czynienia, jakie były przyczyny powstania osadów i na tej podstawie podjęcie decyzji, w jaki sposób 

można wznowić przepływ w instalacji w sytuacjach kryzysowych, stanowi prawdziwe wyzwanie. 

Słowa kluczowe: osady, instalacje eksploatacyjne węglowodorów, SEM-EDS, XRD, pXRF. 

ABSTRACT: During hydrocarbon exploitation, various types of sediments can form in different parts of the installation through which the 

reservoir media flow. The formation of sediments is influenced by several independent factors: the mineral composition of the rock medium 

from which hydrocarbons flow; the composition of drilling muds used during well drilling; the composition of chemicals used during proce-

dures for intensifying hydrocarbon extraction or cleaning installations; and the phenomenon of corrosion of installation elements. The variety 

of mineral and chemical components flowing through the hydrocarbon exploitation installation requires a comprehensive set of methods to 

analyze their mineral composition. The sediments are a mixture of mineral phases derived from the deposit and precipitated from solution 

under changing physicochemical conditions. In order to correctly identify the components of the precipitate and quantitatively analyze the 

mineral composition of samples, it is necessary to apply at least three test methods simultaneously: X-ray diffraction (XRD), X-ray fluores-

cence (XRF), and scanning microscope observation with chemical composition analysis in the SEM-EDS microregion. The most common 

minerals found in sediments are carbonates (calcite, dolomite, siderite), sulfides (pyrite, pyrrhotite, mackinawite, greigite), sulfates (anhy-

drite, barite, gypsum), iron oxides and hydroxides (magnetite, goethite, lepidocrocite), chlorides (halite, sylvite, iron chlorides), silicates and 

aluminosilicates (quartz, feldspars, micas, clay minerals). However, minerals not typically found in sedimentary rocks in Poland, such as 

calcium and iron acetates or potassium and sodium bicarbonates, are also occasionally encountered. The aim of the article is to present the 

enormous variability of the mineral composition of these sediments. The multi-stage nature of the operations carried out in production wells 

and operational installations makes it challenging to determine which phases are present, what the causes of sludge formation were, and, on 

this basis, decide how to resume flow in the installation in crisis situations. 

Key words: sediments, hydrocarbon exploitation installations, SEM-EDS, XRD, pXRF. 
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Analiza minerałów ciężkich w służbie interpretacji geologicznych – procedura wydzielania 
i zastosowanie praktyczne 

Heavy mineral analysis for geological interpretation – separation procedure and practical applications 

Urszula Zagórska, Anna Przelaskowska 

Instytut Nafty i Gazu – Państwowy Instytut Badawczy 



STRESZCZENIE: Minerały ciężkie charakteryzują się dużą odpornością na procesy transportu i wietrzenia, mogą więc stanowić źródło 

wielu cennych informacji na temat formacji skalnych. Analiza minerałów ciężkich znajduje zastosowanie w wielu dziedzinach kluczowych 

dla rozpoznania basenów sedymentacyjnych i prospekcji węglowodorów, takich jak np.: identyfikacja obszarów źródłowych, rekons trukcja 

i charakterystyka środowisk sedymentacyjnych, badania osadów czwartorzędowych i chemostratygrafia. Kluczowe dla uzyskania wiarygod-

nych wyników analiz jest właściwe opróbowanie i preparatyka próbek. Badania minerałów ciężkich mogą być wykonywane na wybranym 

minerale, na przykład w datowaniu U-Pb, lub na całej frakcji ciężkiej, m.in. do celów analizy chemostratygraficznej. Dlatego też pierwszym, 

bardzo istotnym krokiem przed rozpoczęciem wydzielania minerałów ciężkich jest dobór właściwego zakresu uziarnienia próbki, tak aby 

odpowiadał celowi analizy. Separacja minerałów ciężkich jest skomplikowanym, wieloetapowym procesem. W artykule zamieszczono 

szczegółowy opis metodyki wdrożonej w Zakładzie Geofizyki Wiertniczej Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego 

(INiG – PIB). Celem pracy było również przedstawienie badań stanowiących przykład wykorzystania minerałów ciężkich w analizie prowe-

niencji i chemostratygrafii przeprowadzonych w Zakładzie Geofizyki Wiertniczej INiG – PIB oraz przegląd wybranych zastosowań opisa-

nych w literaturze. Zestawienie analizy całej frakcji minerałów ciężkich ze składem mineralnym i szczegółowym składem pierwiastkowym 

umożliwiło wydzielenie stref chemostratygraficznych w piaskowcach czerwonego spągowca. Z kolei badania wykonane na wybranym mine-

rale – datowania U-Pb ziaren cyrkonu z utworów karbońskich w rejonie Wielkopolski w powiązaniu z danymi geochemicznymi, mineralo-

gicznymi i biostratygraficznymi – pozwoliły na identyfikację zmian obszarów źródłowych związanych z wynoszeniem orogenu waryscyj-

skiego. 

Słowa kluczowe: minerały ciężkie, separacja gęstościowa, chemostratygrafia, analiza proweniencji. 

ABSTRACT: Heavy minerals are highly resistant to transport and weathering processes and can therefore be a source of valuable infor-

mation about rock formations. Heavy mineral analysis is used in many areas essential for the characterization of sedimentary basins and 

hydrocarbon prospecting, such as identification of source areas, reconstruction and characterisation of sedimentary environments, Quaternary 

sediment studies and chemostratigraphy. Proper sampling and sample preparation are crucial for obtaining reliable analytical results. Heavy 

mineral studies can be performed on a selected mineral, for example in U-Pb dating, or on the entire heavy mineral fraction, for example for 

chemostratigraphic analysis. This is why the first, very important step before starting the separation of heavy minerals is the selection of 

an appropriate grain size range of the sample so that it corresponds to the purpose of the analysis. The separation of heavy minerals is a com-

plex, multi-stage process. A detailed description of the methodology implemented at the Department of Well Logging, Oil and Gas Institute 

– National Research Institute, is presented in the article. The aim of this study was also to present the application of heavy minerals in che-

mostratigraphy analysis and provenance studies conducted at the Department of Well Logging, along with a review of selected applications 

described in the literature. A comparative analysis of the complete heavy mineral fraction, mineralogical composition, and detailed elemental 

profiles enabled the identification of chemostratigraphic zones within the Rotliegend sandstones. In turn, studies carried out on a single min-

eral – U-Pb dating of zircon grains from Carboniferous formations in the Wielkopolska region, in conjunction with geochemical, mineralogi-

cal, and biostratigraphic data – allowed for the identification of changes in source areas associated with the uplift of the Variscan orogen. 

Key words: heavy minerals, density separation, chemostratigraphy, provenance analysis. 
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Identyfikacja i selekcja mikroorganizmów zdolnych do wytwarzania biowodoru w celu 
potencjalnego wykorzystania w złożach karpackich 

Identification and selection of microorganisms capable of generating biohydrogen for potential use in 
Carpathian deposits 

Piotr Kapusta, Joanna Brzeszcz, Anna Turkiewicz, Marek Janiga 

Instytut Nafty i Gazu – Państwowy Instytut Badawczy 

STRESZCZENIE: W niniejszej pracy zbadano, czy w wodach złożowych oraz w miejscach samoistnych wycieków ropy naftowej obecne są 

bakterie zdolne do wytwarzania biowodoru na skutek procesów fermentacji substancji organicznych. Zagadnienie to ma ścisły związek 

z przyjętą przez UE strategią Europejskiego Zielonego Ładu, zakładającą redukcję emisji o 55% do 2030 roku. Elementami tej strategii są 

technologie wytwarzania biowodoru (zwanego białym bądź złotym wodorem). W strategię tę wpisuje się również synteza biometanu (bio-

gennego metanu) z CO2 i H2. Analizie poddano próbki wód złożowych oraz próbki gleby pochodzące z miejsc naturalnych wycieków ropy 

naftowej. Szczegółową analizę wykonano za pomocą sekwencjonowania metataksonomicznego, natomiast w analizach dotyczących liczeb-

ności mikroorganizmów posłużono się metodami klasycznymi z użyciem podłoży mikrobiologicznych, a obecność metanogennych archeo-

nów potwierdzono metodą FISH (ang. fluorescence in situ hybridization – fluorescencyjna hybrydyzacja in situ). Obecność bakterii generu-

jących biowodór wykazano we wszystkich analizowanych próbkach, jednak tylko w jednym przypadku udało się wygenerować biowodór  

w stężeniu niemal 4%, natomiast w drugim tylko jego ślady. Uzyskano natomiast metan w trzech przypadkach w ilościach dużych (>60% 

w otrzymanym biogazie), zaś w jednym w ilości dostatecznej. W pozostałych przypadkach otrzymano najwyżej śladowe ilości metanu, co 

było najprawdopodobniej wynikiem aktywności bakterii homoacetogennych i powstawania biogennego octanu (proces acetogenezy zużywa 

powstający biowodór, hamując tym samym także metanogenezę). O ile uzyskanie biowodoru z wykorzystaniem bakterii wyizolowanych ze 

środowiska naturalnego jest procesem trudnym, o tyle uzyskanie biogennego metanu jest możliwe i docelowo wydaje się, że taki proces 

można spróbować przeprowadzić w warunkach przemysłowych na jednym ze sczerpanych karpackich złóż ropy naftowej i gazu ziemnego. 

Słowa kluczowe: mikroorganizmy, biowodór, biometan, metanogeneza, wody złożowe. 



ABSTRACT: This paper examines the presence of bacteria capable of producing biohydrogen through the fermentation of organic substanc-

es in formation water and at sites of spontaneous oil seeps. This issue is closely related to the EU's European Green Deal strategy, which 

aims to reduce emissions by 55% until 2030. Technologies for producing biohydrogen, also referred to as white or gold hydrogen, are part of 

this strategy. The synthesis of biomethane (biogenic methane) from CO2 and H2 is also included within this framework. Samples of reservoir 

waters and soil from six natural oil seep sites were analyzed. Detailed analyses were performed using metataxonomic sequencing, while 

qualitative analyses of microorganism abundance were carried out using conventional methods with microbiological media. The presence of 

methanogenic Archaea was confirmed using FISH (fluorescence in situ hybridization). The presence of biohydrogen-generating bacteria was 

demonstrated in all analyzed samples; however, only one sample yielded biohydrogen at a concentration of nearly 4%, while the others 

yielded only trace amounts of this product. Methane was generated in three cases in large quantities (>60% of the resulting biogas) and in 

one case in sufficient quantities. In the remaining cases, only trace amounts of methane were produced, most likely due to the activity of 

homoacetogenic bacteria and the formation of biogenic acetate (acetogenesis consumes the resulting biohydrogen, thus inhibiting methano-

genesis). While obtaining biohydrogen with bacteria isolated from the natural environment is difficult, the production of biogenic methane is 

possible. Ultimately, it appears that such a process can be attempted under industrial conditions in one of the depleted crude oil and natural 

gas fields. 

Key words: microorganisms, biohydrogen, biomethane, methanogenesis, reservoir waters. 
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Badanie wpływu wodoru na rury stalowe o minimalnej normatywnej granicy plastyczności 
485 MPa 

Study of the effect of hydrogen on steel pipes with a minimum yield strength of 485 MPa 

Piotr Szewczyk 

Instytut Nafty i Gazu – Państwowy Instytut Badawczy 

STRESZCZENIE: Transport wodoru rurociągami stalowymi może prowadzić do niekorzystnego oddziaływania na ich materiał. Zjawisko to 

ma szczególne znaczenie w przypadku stali o podwyższonej wytrzymałości, na przykład o minimalnej normatywnej granicy plastyczności 

wynoszącej 485 MPa. Na odporność stali na działanie wodoru wpływ mają takie czynniki jak środowisko pracy, właściwości materiałowe 

oraz charakterystyka mechaniczna. W obszarze środowiska istotna jest temperatura, w odniesieniu do materiału – poziom wytrzymałości, 

mikrostruktura i jej jednorodność, a w zakresie właściwości mechanicznych – naprężenia występujące w ściankach rury, wady materiałowe, 

cykliczne zmiany ciśnienia oraz naprężenia szczątkowe pozostające w materiale po procesach produkcyjnych i obróbczych. Ze względu na 

stosunkowo niską temperaturę pracy rurociągów transportujących wodór nie ma konieczności oceny wpływu wodoru na materiał w tempera-

turach powyżej 150°C, w których czynnik ten może istotnie oddziaływać na odporność stali. Rury stalowe wytwarzane w odmiennych wa-

runkach obróbki różnią się składem chemicznym oraz mikrostrukturą. W przypadku rur przewidzianych do pracy przy wysokich napręże-

niach zaleca się stosowanie stali normalizowanej. W obszarze czynników mechanicznych istotne są naprężenia w ściance rury i ich zmien-

ność, defekty materiałowe oraz naprężenia szczątkowe pozostające po procesach produkcyjnych. Gazociągi projektowane są głównie do 

pracy przy obciążeniach statycznych, gdyż zmiany ciśnienia są niewielkie. Długotrwałe oddziaływanie wodoru może jednak powodować 

degradację mechaniczną, prowadzącą do inicjacji i propagacji pęknięć oraz obniżenia wytrzymałości stali. W artykule zaprezentowano wy-

niki badań przeprowadzonych w Instytucie Nafty i Gazu – Państwowym Instytucie badawczym (INiG – PIB), których celem była ocena 

wpływu wodoru na rury wykonane ze stali gatunku L485NE. Badania polegały na poddaniu próbki rury działaniu wodoru pod ciśnien iem 

6,3 MPa. Następnie przeprowadzono ocenę potencjalnych uszkodzeń ścianki rury z zastosowaniem badań ultradźwiękowych. Na podstawie 

uzyskanych wyników nie stwierdzono negatywnego oddziaływania wodoru na materiał badanej rury. 

Słowa kluczowe: wodór, rurociąg, poddawanie materiału działaniu wodoru. 



ABSTRACT: The transport of hydrogen through steel pipelines may adversely affect the pipeline material. This effect is of particular con-

cern for high-strength steels, such as those with a minimum specified yield strength of 485 MPa. The resistance of steel to hydrogen is influ-

enced by factors such as the environment, material properties, and mechanical characteristics. In terms of the environment, temperature is 

important; in terms of the material, strength, microstructure, and its homogeneity are important; and in terms of mechanical properties, 

stresses occurring in the pipe walls, material defects, cyclic pressure changes, and residual stresses remaining in the material after production 

and processing are important. Due to the relatively low operating temperature of hydrogen transport pipelines, it is not necessary to assess the 

effect of hydrogen on the material at temperatures above 150°C, where this factor can significantly affect the resistance of steel. Steel pipes 

manufactured under different processing conditions will differ in chemical composition and microstructure. For pipes intended for operation 

under high stress levels, the use of normalised steel is recommended. In terms of mechanical factors, the stresses in the pipe wall and their 

variability, material defects, and residual stresses remaining after the manufacturing processes are important. Gas pipelines are mainly de-

signed to operate under static loads, and pressure changes are minor. However, prolonged exposure to hydrogen can cause mechanical deg-

radation, leading to the initiation and propagation of cracks and a reduction in the strength of the steel. This article presents the results of 

investigations conducted at Oil and Gas Institute – National Research Institute (INiG – PIB) to assess the influence of hydrogen on pipes 

manufactured from L485NE steel. The tests involved exposing pipe sample to hydrogen at a pressure of 6.3 MPa. Subsequently, the pipe 

walls were examined for potential damage using ultrasonic testing. Based on the obtained results, no detrimental effect of hydrogen on the 

pipe material was observed. 

Key words: hydrogen, pipeline, exposing material to hydrogen. 
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Ocena stopnia nienasycenia produktów ciekłych z pirolizy surowców odpadowych 

Assessment of the degree of unsaturation of liquid products from the pyrolysis of waste raw materials 

Sylwia Jędrychowska, Aleksander Kopydłowski, Agnieszka Wieczorek 

Instytut Nafty i Gazu – Państwowy Instytut Badawczy 

STRESZCZENIE: W ostatnich latach coraz większy udział w rynku zdobywają produkty ciekłe pochodzące z procesu pirolizy. Choć cieszą 

się one rosnącym zainteresowaniem, to zapewnienie jakości badań wykonywanych znormalizowanymi metodami, takimi jak oznaczenie 

składu indywidualnego, składu grupowego czy też niektórych parametrów fizykochemicznych, jest utrudnione ze względu na obecne  w tych 

produktach liczne związki tlenowe oraz węglowodory nienasycone. Artykuł skupia się na rozeznaniu możliwości badania tych produktów 

przy użyciu standardowych oznaczeń stopnia nienasycenia oraz na próbie określenia korelacji otrzymanych wyników badań i możliwości ich 

wymiennego stosowania. W ramach badań przeprowadzono oznaczenia stopnia nienasycenia i zawartości olefin w produktach pirolizy oraz 

ich rozdestylowanych frakcji metodami oznaczania liczby bromowej techniką miareczkowania biamperometrycznego według ISO 3839, 

zawartości olefin metodą opisaną w załączniku A2 do normy ASTM D1159, oznaczania zawartości grup węglowodorów metodą adsorpcyj-

ną ze wskaźnikiem fluorescencyjnym według PN-EN 15553 oraz oznaczania zawartości olefin techniką IR. W wyniku przeprowadzonych 

badań stwierdzono, że oznaczenie liczby bromowej techniką miareczkowania biamperometrycznego, pozwalające na ocenę stopnia nienasy-

cenia produktów popirolitycznych, jest możliwe do wykonania we wszystkich badanych próbkach. Obecne w badanych próbkach różnorod-

ne związki tlenowe i składniki barwiące, jak również ograniczenia metody dotyczące górnej granicy temperatury wrzenia produktu nie po-

zwoliły na wskazanie korelacji pomiędzy liczbą bromową a wynikami oznaczenia zawartości olefin metodą FIA. W związku z powyższym 



nie można traktować takiego przeliczenia jako uniwersalnego sposobu na oszacowanie zawartości olefin w produkcie. Zaobserwowano kore-

lację między wartością absorbancji pasma charakterystycznego dla olefin oznaczonego techniką IR a oznaczoną liczbą bromową dla próbek 

ciekłych. Konieczna jest jednak kontynuacja badań dla olejów popirolitycznych wytwarzanych z innych surowców niż tworzywa sztuczne. 

Słowa kluczowe: stopień nienasycenia, produkty po pirolizie, olefiny, liczba bromowa, zawartość grup węglowodorów, FIA. 

ABSTRACT: In recent years, liquid products derived from pyrolysis have been gaining an increasing market share. Although interest in 

them is growing, ensuring the quality of tests performed using standardized methods, such as the determination of individual composition, 

group composition, or selected physicochemical parameters, is difficult due to the numerous oxygenates and unsaturated hydrocarbons pre-

sent in these products. This article focuses on exploring the possibility of testing these products using standard determination of the degree of 

unsaturation and on attempting to identify correlations between the obtained test results and the potential for their interchangeable use. The 

study involved determining the degree of unsaturation and olefin content in pyrolysis products and their distilled fractions using the follow-

ing methods: determination of the bromine number using the electrometric method according to ISO 3839 and Annex A2 to ASTM D1159 

standard; determination of hydrocarbon types using the fluorescent indicator adsorption method according to PN-EN 15553 standard; and 

determination of the olefin band using the infrared (IR) technique. The study demonstrated that determination of the bromine number using 

biamperometric titration, which enables assessment of the degree of unsaturation in pyrolysis products, is feasible for all tested samples. The 

presence of various oxygen-containing compounds and coloring components in the tested samples, as well as method limitations related to 

the upper boiling point of the product, did not allow for the establishment of a correlation between the bromine number and the olefin content 

determined using the FIA method. Therefore, this conversion cannot be regarded as a universal method for estimating olefin content in 

a product. A correlation was observed between the absorbance value of the olefin-specific band determined by IR and the bromine number 

determined for liquid samples. However, further research is required for pyrolysis oils produced from raw materials other than plastics. 

Key words: degree of unsaturation, pyrolysis products, olefins, bromine number, content of hydrocarbon types, FIA. 
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